Potencialidades como antivirales de compuestos de origen marino: una revisión

Autores/as

Palabras clave:

organismos marinos, productos naturales, actividad antiviral, enfermedades virales, fármacos

Resumen

A pesar del gran número de evidencias experimentales y el desarrollo de algunos productos, a la fecha, la inmensa mayoría de las enfermedades virales carece de tratamiento terapéutico y profiláctico, y continúan siendo un grave problema de salud. Varias han sido las fuentes descritas como reservorios de compuestos con actividad antiviral contra un amplio espectro de virus. La vasta extensión oceánica ha sido clasificada, en la década de 1980, como el mayor depósito de productos naturales a evaluar por su actividad como posibles drogas. Varios estudios han demostrado que los organismos marinos producen una variedad de compuestos, derivados del metabolismo primario o secundario, que pue- den poseer actividades antivirales y aplicaciones farmacéuticas. Esta revisión se propone abordar las tendencias de la investigación sobre los efectos antivirales in vitro e in vivo de organismos marinos en los últimos años, contra diferentes clases de patógenos virales en todo el mundo. Se consultaron varias bases de datos electrónicas, incluidas PubMed, Google Scholar, Journal of Virology y Journal of General Virology, en busca de artículos publicados en inglés que evaluaran la actividad antiviral de compuestos de origen marino. Los datos presentados en esta revisión destacan las potencialidades de compuestos deriva- dos de organismos marinos como fuentes de nuevos antivirales y abren nuevas vías para más investigaciones sobre este tema.

 

Recibido: 23-05-2022 Aceptado: 23-09-2022

Editor: Aymée Robainas Barcia

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmad, A., Kaleem, M., Ahmed, Z., Shafiq, H. (2015). Therapeutic potential of flavonoids and their mechanic of action against microbial and viral infections-A review. Food Res. Int., 77, 221-235.

Ahmadi, A., Moghadamtousi, S.Z., Abubakar, S., Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Research International, 10.

Ahmadi, A.R., Ayazi-Nasrabadi, R. (2021). Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. Iranian journal of microbiology, 13(4), 434-441.

Akram, M., Tahir, I.M., Shah, S., Mahmood, Z., Altaf, A., Ahmad, K., Mehboob, H. (2018). Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis and coxsackievirus: A systematic review. Phytother Res., 32(5), 811-822.

Al- Nahas. (2011). Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. AM. African J. Microbiol. Res., 5, 3823–3831.

Albis, M.R., Gómez-López, D.I., Duque, G. (2010). Estructura de las praderas de Thalassia testudinum en un gradiente de profundidad en La Guajira, Caribe Colombiano. Biol. Invest. Mar. Cost., 39(2): 381-395.

Andjelic, C.D., Planelles, V., Barrows, L.R. (2008). Characterizing the anti-HIV activity of Papuamide A. Mar Drugs., 6(4),528–49.

Balseiro, P., Falcó, A., Romero, A., Dios, S., Martínez-López, A., Figueras, A., Estepa, A., Novoa, B. (2011). Mytilus galloprovincialis myticin C: A chemotactic molecule with antiviral activity and immunoregulatory properties. PLoS ONE, 6, e23140.

Barton, C., Kouokam, J.C., Lasnik, A.B., Foreman, O., Cambon, A., Brock, G., Montefiori, D.C., Vojdani, F., McCormick, A.A., O'Keefe, B.R., Palmer, K.E. (2014). Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models. Antimicrobial agents and chemotherapy, 58(1), 120–127.

Bhaduri, P., Mohamed, B.T., Wright, P.C. (2006). El estado actual de los productos naturales de hongos marinos y su potencial como agentes antiinfecciosos. J. Ind. Microbiol. Biotecnología., 33, 325–337.

Bhuiyan, F.R., Howlader, S., Raihan, T., Hasan, M. (2020). Plants metabolites: Possibility of natural therapeutics against the COVID-19 Pandemic. Frontiers in medicine, 7, 444.

Bian, C., Wang, J., Zhou, X., Wu, W., Guo, R. (2020). Recent advances on marine alkaloids from sponges. Chem. Biodivers., 17, e2000186.

Bianco, É.M., De Oliveira, S.Q., Rigotto, C., Tonini, M.L., Da Rosa Guimarães, T., Bittencourt, F., Gouvêa, L.P., Aresi, C., De Almeida, M.T.R., Moritz, M.I.G., et al. (2013). Anti-infective potential of marine invertebrates and seaweeds from the Brazilian coast. Molecules, 18, 5761–5778.

Bilan, M.I., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., Usov, A.I. (2006). Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res., 341, 238–245.

Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, N.E., Usov, A.I. (2002). Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr. Res., 337, 719–730.

Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, N.E., Usov, A.I. (2004). A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydr. Res., 339, 511–517.

Bilan, M.I., Vinogradova, E.V., Tsvetkova, E.A., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., Usov, A.I. (2008). A sulfated glucuronofucan containing both fucofuranose and fucopyranose residues from the brown alga Chordaria flagelliformis. Carbohydr. Res., 343, 2605–2612.

Bordbar, S., Anwar, F., Saari, N. (2011). High-Value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs, 9, 1761–1805.

Buzzini, P., Arapitsas, P., Goretti, M., Branda, E., Turchetti, B., Pinelli, P.,… Romani, A. (2008). Antimicrobial and Antiviral Activity of Hydrolysable Tannins. Mini Rev. Med. Chem., 8(12), 1179–1187.

Cajaleón, J. (2018). Uso tradicional de plantas medicinales para el tratamiento de infecciones respiratorias agudas en niños menores de 5 años de la comunidad rural de Margos-Huánuco. Tesis de Licenciatura. Universidad de Huánuco. http://docs.bvsalud.org/biblioref/2018/10/915646/uso-tradicional-de-plantas-medicinales-para-el-tratamiento-de-i_DqpCGB4.

Calland, N., Dubuisson, J., Rouillé, Y., Séron, K. (2012). Hepatitis C virus and natural compounds: A new antiviral approach? Viruses., 4(10), 2197–2217.

Campos Aldrete, M.E. (2006). Reseña de "Antiviral Drugs" de J.S Driscoll. Rev. Mex. Cien. Farm., 37(1): 46-47.

Cao, F., Shao, C.L., Chen, M., Zhang, M.Q., Xu, K.X., Meng, H., Wang, C.Y. (2014). Antiviral C-25 epimers of 26-acetoxysteroids from the South China Sea gorgonian Echinogorgia rebekka. J.Nat. Prod.,77,1488–1493.

Cao, Q., Zhao, J., Xing, M., Xiao, H., Zhang, Q., Liang, H., Ji, A., Song, S. (2020). Current research landscape of marine-derived anti-atherosclerotic substances. Mar. Drugs, 18, 440.

Cardozo, F.T.G.S., Larsen, I.V., Jose, G., Stern, R.A., Brummel, R.C., Camelini, C.M., Rossi, M.J., Simoes, C.M.O., Brandt, C.R. (2013). In vivo anti-herpes simplex virus activity of a sulfated derivated of Agaricus brsiliensis mycelial polysaccharide. Antomicrob. Agents Chemother, 57,2541-2549.

Castilla, V., Ramirez, J., Coto, E.C. (2010). Plant and Animal Steroids a New Hope to Search for Antiviral Agents. Curr. Med. Chem., 17(18), 1858–1873.

Chan, Y.S., Ong, C.W., Chuah, B.L., Khoo, K.S., Chye, F.Y., Sit, N.W. (2018). Antimicrobial, antiviral and cytotoxic activities of selected marine organisms collected from the coastal areas of Malaysia. J.Mar. Sci. Technol., 26, 128–136.

Chandía, N.P., Matsuhiro, B. (2008). Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol., 42, 235–240.

Chattopadhyay, D., Naik, T. (2007). Antivirals of Ethnomedicinal Origin: Structure-Activity Relationship and Scope. Mini Rev. Med. Chem., 7(3): 275–301.

Chen, W.H., Wang, S.K., Duh, C.Y. (2011). Polyhydroxylated steroids from the bamboo coral Isis hippuris. Mar. Drugs, 9, 1829–1839.

Chen, M.H., Chang, S.S., Dong, B., Yu, L.Y., Wu, Y.X., Wang, R.Z., Jiang, W., Gao, Z.P., Si, S.Y. (2018). Ahmpatinin iBu, a new HIV-1, protease inhibitor, from Streptomyces sp. CPCC 202950. RSC Advances, 8(10), 5138-5144.

Cheng, S.Y., Chen, P.W., Chen, H.P., Wang, S.K., Duh, C.Y. (2011). New cembranolides from the Dongsha Atoll soft coral Lobophytum durum. Mar. Drugs, 9, 1307–1318.

Cheng, S.Y., Chuang, C.T., Wang, S.K., Wen, Z.H., Chiou, S.F., Hsu, C.H., Dai, C.F., Duh, C.Y. (2010). Antiviral and anti-inflammatory diterpenoids from the soft coral Sinularia gyrosa. J. Nat. Prod., 73, 1184–1187.

Cheng, S.Y., Wang, S.K., Duh, C.Y. (2014). Secocrassumol, a seco-cembranoid from the Dongsha Atoll soft coral lobophytum crassum. Mar. Drugs, 12, 6028–6037.

Chevolot, L., Mulloy, B., Ratiskol, J., Foucault, A., Colliec-Jouault, S. (2001). A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr. Res., 330, 529–535.

Chouhan, H.S., Singh, S.K. (2011). Phytochemical analysis, antioxidant and anti-inflammatory activities of Phyllanthus simplex. J. Ethnopharmacol., 137(3): 1337-1344.

Comin, M.J., Maier, M.S., Roccatagliata, A.J., Pujol, C.A., Damonte, E.B. (1999). Evaluation of the antiviral activity of natural sulfated polyhydroxysteroids and their synthetic derivatives and analogs. Steroids, 64, 335–340.

Corto, F., Carruthers, T., Dennison, W., Waycott, M. (2007). Distribución y diversidad global de pastos marinos: un análisis biorregional modelo. Exp. J. Mar Bio. Ecol., 350, 3–20.

Dang, V.T., Benkendorff, K., Speck, P. (2011). In vitro antiviral activity against herpes simplex virus in the abalone Haliotis laevigata. J. Gen. Virol., 92, 627–637.

Davis, R., Zivanovic, S., D’Souza, D.H., Davidson, P.M. (2012). Effectiveness of chitosanon the inactivation of enteric viral surrogates. Food Microbiol., 32, 57–62.

de Silva, E.D., Scheuer, P.J. (1980). Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variabilis (Polejaeff). Tetrahedron Lett., 21, 1611–1614.

Dolashka, P., Nesterova, N., Zagorodnya, S., Aleksandar, D., Baranova, G., Golovan, A., Voelter, W. (2014). Antiviral activity of Hemocyanin Rapana venosa and its isoforms against Epstein-Barr virus. Glob. J. Pharmacol., 8, 206–212.

Edrada, R.A., Proksch, P., Wray, V., Witte, L. y Van Ofwegen, L. (1998). Four new bioactive lobane diterpenes of the soft coral Lobophytum pauciflorum from Mindoro, Philippines. J. Nat. Prod., 61, 358–361.

FDA. (2022). Advancing health through innovation: New drug therapy approvals 2021. Center for drug evaluation and research.

Fedoreyev, S.A., Krylova, N.V., Mishchenko, N.P., Vasileva, E.A., Pislyagin, E.A., Iunikhina, O.V., Lavrov, V.F., Svitich, O.A., Ebralidze, L.K., Leonova, G.N. (2018). Antiviral and antioxidant properties of echinochrome A. Mar. Drugs, 16, 509.

Feldman, S.C., Reynaldi, S., Stortz, C.A., Cerezo, A.S., Damont, E.B. (1999). Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine:international journal of phytotherapy and phytopharmacology, 6(5), 335–340.

Frómeta, R. (2019). Evaluación de la actividad antiviral in vitro de la planta marina Thalassia testudinum frente al echovirus 9. Tesis de Diploma. Universidad de La Habana. Cuba.

Fu, X.M., Zhang, M.Q., Shao, C.L., Li, G.Q., Bai, H., Dai, G.L., Chen, Q.W., Kong, W., Fu, X.J., Wang, C.Y. (2016). Chinese Marine Materia Medica resources: Status and potential. Mar. Drugs, 14, 46.

Gao, C.H., Wang, Y.F., Li, S., Qian, P.Y., Qi, S.H. (2011). Alkaloids and sesquiterpenes from the South China Sea gorgonian Echinogorgia pseudossapo. Mar. Drugs, 9, 2479–2487.

Garrido Santos, G.A., Murray, A.P., Pujol, C.A., Damonte, E.B., Maier, M.S. (2003). Synthesis and antiviral activity of sulfated and acetylated derivatives of 2β,3α-dihydroxy-5α-cholestane. Steroids, 68, 125–132.

Gastineau, R., Hardivillier, Y., Leignel, V., Tekaya, N., Morançais, M., Fleurence, J., Davidovich, N., Jacquette, B., Gaudin, P., Hellio, C., et al. (2012b). Greening e_ect on oysters and biological activities of the blue pigments produced by the diatom Haslea karadagensis (Naviculaceae). Aquaculture, 368–369, 61–67.

Gastineau, R., Pouvreau, J.B., Hellio, C., Morançais, M., Fleurence, J., Gaudin, P., Bourgougnon, N., Mouget, J.L. (2012a). Biological activities of purified marennine, the blue pigment responsible for the greening of oysters. J. Agric. Food Chem., 60, 3599–3605.

Gerwick, W. (1987). Drugs from the Sea: The Search Continues. J. Pharm. Technol., 3, 136–141.

Guo, P., Wang, Z., Li, G., Liu, Y., Xie, Y., Wang, Q. (2016). First discovery of polycarpine, Polycarpaurines A and C, and their derivatives as novel antiviral and antiphytopathogenic fungus agents. J.Agric. FoodChem., 64, 4264–4272.

Gupta, D.K., Kaur, P., Leong, S.T., Tan, L.T., Prinsep, M.R., Chu, J.J.H. (2014). Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Mar. Drugs, 12, 115–127.

Hamdy, A.H.A., Mettwallya, W.S.A., El Fotouh, M.A., Rodríguez, B., El-Dewany, A.I., El-Toumy, S.A.A., Hussein, A.A. (2012). Compuestos fenólicos bioactivos de la hierba marina del Mar Rojo egipcio Thalassodendron ciliatum. Piel Zeitschrift Naturforsch. Secta. C J. Biosci., 67, 291–296.

Hawas, U.W., Abou El-Kassem, L.T. (2017). Thalasiolin D: a new flavone O-glucoside Sulphate from the seagrass Thalassia hemprimchii. Nat. Prod. Res., 31(20): 2369-2374.

He, F., Bao, J., Zhang, X.Y., Tu, Z.C., Shi, Y.M., Qi, S.H. (2013). AsperterrestideA,a cytotoxiccyclictetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod., 7, 1182–1186.

Hernández, Y., González, K., Valdés-Iglesias, O., Zarabozo, A., Portal, Y., Laguna, A., Martínez-Daranas, B., Rodriguez, M., Gutierrez, R. (2016). Comportamiento estacional de Thalassia testudinum (Hydrocharitaceae) metabolitos. Rev. Biol. Trop., 64(4): 1527-1535. ISSN 0034-7744.

Hidari, K.I.P.J., Takahashi, N., Arihara, M., Nagaoka, M., Morita, K., Suzuki, T. (2008). Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 376, 91–95.

Ho, H.Y., Cheng, M.L., Weng, S.F., Leu, Y.L., Chiu, D.T.Y. (2009). Antiviral Effect of Epigallocatechin gallate on Enterovirus 71. J. Agric. Food Chem., 57(14): 6140–6147.

Ibrahim, H.A.H., El-Naggar, H.A., El-Damhougy, K.A., Bashar, M.A.E., Abou Senna, F.M. (2017). Callyspongia crassa and C. siphonella (Porifera, Callyspongiidae) as a potential source for medical bioactive substances, Aqaba Gulf, Red Sea, Egypt. J. Basic Appl. Zool., 78, 7.

Iwashima, M., Shinoda, D., Mori, J., Saito, H., Xiang, T., Sankawa, U. (2005). Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biological and Pharmaceutical Bulletin., 28, 374-7.

Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., Solecka, J. (2018). Metabolitos secundarios de actinomicetos y sus propiedades antibacterianas, antifúngicas y antivirales. Polaco J. Microbiol., 67, 259–272.

Jaspars, M., De Pascale, D., Andersen, J.H., Reyes, F., Crawford, A.D., Ianora, A. (2016). The marine biodiscovery pipeline and ocean medicines of tomorrow. J. Mar. Biol. Assoc. UK, 96, 151–158.

Jassim, S.A., Naji, M.A. (2003). Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol., 95, 412-27.

Ka, E., El-naggar, H.A., Ibrahim, H.A.H., Bashar, M.A.E., Senna, F.M.A. (2017). Biological activities of some marine sponge extracts from Aqaba Gulf, Red Sea, Egypt. Int. J. Fish. Aquat. Stud., 5, 652–659.

Katanaev, V.L., Di Falco, S., Khotimchenko, Y. (2019). The anticancer drug discovery potential of marine invertebrates from Russian Pacific. Mar. Drugs, 17, 474.

Khotimchenko, Y. (2018). Pharmacological potential of sea cucumbers. Int. J. Mol. Sci., 19, 1342.

Kim, M., Yim, J.H., Kim, S.Y., Kim, H.S., Lee, W.G., Kim, S.J., Kang, P.S., Lee, C.K. (2012). In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res., 93, 253–259.

Kiuru, P., Valeria D’Auria, M., Muller, C.D., Tammela, P., Vuorela, H., Yli-Kauhaluoma, J. (2014). Exploring marine resources for bioactive compounds. Planta Med., 80, 1234–1246.

Krilova, N.V., Leonova, G.N., Maystrovskaya, O.S., Popov, A.M., Artyukov, A.A. (2018).Mecanismos de actividad antiviral del complejo de polifenoles de pastos marinos de la familia Zosteraceae contra el virus de la encefalitis transmitida por garrapatas. Toro. Exp. Biol. Medicina., 165, 61–63.

Krylova, N.V., Ermakova, S.P., Lavrov, V.F., Leneva, I.A., Kompanets, G.G., Iunikhina, O.V., Nosik, M.N., Ebralidze, L.K., Falynskova, I.N., Silchenko, A.S., Zaporozhets, T.S. (2020). El análisis comparativo de la actividad antiviral de los fucoidanos nativos y modificados del alga parda Fucus evanescens in vitro e in vivo. Medicamentos marinos , 18 (4), 224.

Kuznetsova, T.A., Smolina, T.P., Makarenkova, I.D., Ivanushko, L.A., Persiyanova, E.V., Ermakova, S.P., Silchenko, A.S., Zaporozhets, T.S., Besednova, N.N., Fedyanina, L.N., et al. (2020). Immunoadjuvant Activity of Fucoidans from the Brown Alga Fucus evanescens. Mar. Drugs, 18, 155.

Lakshmi, V., Kumar, R. (2009). Metabolites from Sinularia species. Nat. Prod. Res., 23, 801–850.

Landon, R., Gueguen, V., Petite, H., Letourneur, D., Pavon-Djavid, G., Anagnostou, F. (2020). Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar. Drugs, 18, 357.

Lee, C. (2019). Griffithsin, a Highly Potent Broad-Spectrum Antiviral Lectin from Red Algae: From Discovery to Clinical Application. Mar. Drugs, 17(10), 567.

Lelesius, R., Karpovaite, A., Mickiene, R. et al. (2019). Actividad antiviral in vitro de quince especies de extractos de plantas contra el virus de la bronquitis infecciosa aviar. BMC Vet. Res., 15, 178.

Li, Y., But, P.P., Ooi, V.E. (2005). Antiviral activity and mode of action of caffeoylquinic acids from Schefflera heptaphylla (L.). Antiviral Res., 68(1), 1-9.

Lillsunde, K.E., Festa, C., Adel, H., DeMarino, S., Lombardi, V., Tilvi, S., Nawrot, D.A., Zampella, A., D’Souza, L., D’Auria, M.V., et al. (2014). Bioactive cembrane derivatives from the Indian Ocean soft coral, Sinularia kavarattiensis. Mar. Drugs, 12, 4045–4068.

Liu, H.P., Chen, R.Y., Zhang, Q.X., Wang, Q.Y., Li, C.R., Peng, H., Cai, L., Zheng, C.Q., Wang, K.J. (2012). Characterization of two isoforms of antiliopolysacchride factors (Sp-ALFs) from the mud crab Scylla paramamosain. Fish Shell fish Immunol., 33, 1–10.

Ma, X., Nong, X.H., Ren, Z., Wang, J., Liang, X., Wang, L., Qi, S.H. (2017). Péptidos antivirales del hongo Aspergillus sp. derivado de la gorgonia marina. SCSIO 41501.Tetraedro Lett., 58, 1151–1155.

Maier, M.S., Roccatagliata, A.J., Kuriss, A., Chludil, H., Seldes, A.M., Pujol, C.A., Damonte, E.B. (2001). Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumisliouvillei. J.Nat. Prod., 64, 732–736.

Mendoza, A. (2015). Uso de plantas medicinales para el alivio de la fiebre por los pobladores del Asentamiento Humano Pedro Castro Alva Chachapoyas. Tesis de Licenciatura. Amazonas: Universidad Nacional Toribio Rodríguez Mendoza. http://repositorio.untrm.edu.pe/handle/UNTRM/39.

Moghadamtousi, S.Z., Nikzad, S., Kadir, H.A., Abubakar, S., Zandi, K. (2015). Potential antiviral agents from marine fungi: an overview. Mar Drugs., 13(7), 4520-4538.

Mohamed, M.M.D., Hamdy, A.H.A., Mettally, W.S.A., El-Beih, A.A., Kobayashi, N. (2014). Actividad contra el virus de la influenza A de un nuevo diglucósido de dihidrocalcona aislado del pasto marino egipcio Thalassodendron ciliatum (Forsk.) den Hartog. Nat. Pinchar. Res., 28, 377–382.

Mori, T., O’Keefe, B.R., Sowder, R.C., Bringans, S., Gardella, R., Berg, S., Cochran, P., Turpin, J.A., Buckheit, R.W., McMahon, J.B., et al. (2005). Isolation and characterization of Griffithsin, a novel HIV-inactivating protein, from the red alga Gri_thsia sp. J. Biol. Chem., 280, 9345–9353.

Nesterova, N.V., Zagorodnya, S.D., Moshtanska, V., Dolashka, P., Baranova, G.V., Golovan, A.V., Kurova, A.O. (2011). Antiviral activity of hemocyanin isolated from marine snail Rapana venosa. Antiviral Res., 90, 606–610.

Niedermeyer, T.H.J. (2015). Anti-infective Natural Products from Cyanobacteria. Planta Med., 81, 1309–1325.

Novoa, B., Romero, A., Álvarez, Á.L., Moreira, R., Pereiro, P., Costa, M.M., Dios, S., Estepa, A., Parra, F., Figueras, A. (2016). Antiviral activity of Myticin C peptide from mussel: An ancient defense against herpesviruses. J. Virol., 90, 7692–7702.

Ochoa, W.W., Rodríguez, M. (2020). Fitoterapia altoandina como potencial ante la COVID-19. Rev. Cuba. Investig. Biomed., 39(4).

Oku, N., Gustafson, K.R., Cartner, L.K., Wilson, J.A., Shigematsu, N., Hess, S., et al. (2004). Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. J Nat Prod., 67(8), 1407–1411.

OMS (2013). Estrategia de la OMS sobre medicina tradicional 2014-1023. WHO. http://www.who.int/topics/traditional_medicine/WHO-strategy/es/

Organización Panamericana de la Salud/Organización Mundial de la Salud. (2021c). Actualización Epidemiológica: Influenza en el contexto de la pandemia por COVID-19. Washington, D.C.: OPS/OMS. 2021.

Organización Panamericana de la Salud/Organización Mundial de la Salud. (2021b). Actualización epidemiológica: Enfermedad por Coronavirus (COVID-19). 23 de diciembre de 2021, Washington, D.C.: OPS/OMS; 2021.

Papapanou, M., Papoutsi, E., Giannakas, T., Katsaounou, P. (2021). Plitidepsina: Mecanismos y Perfil Clínico de un Agente Antiviral Prometedor contra COVID-19. Revista de medicina personalizada.

Park, J.Y., Kim, J.H., Kwon, J.M., Kwon, H.J., Jeong, H.J., Kim, Y.M., Kim, D., Lee, W.S., Ryu, Y.B. (2013). Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorganic Med. Chem., 21, 3730–3737.

Peng, H., Liu, H.P., Chen, B., Hao, H., Wang, K.J. (2012). Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr. Purif., 82, 37–44.

Peng, Y., Xie, E., Zheng, K., Fredimoses, M., Yang, X., Zhou, X., Wang, Y., Yang, B., Lin, X., Liu, J., et al. (2013). Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar. Drugs, 11, 20–32.

Peng, Y., Xie, E., Zheng, K., Fredimoses, M., Yang, X., Zhou, X., Wang, Y., Yang, B., Lin, X., Liu, J., et al. (2013). Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar. Drugs, 11, 20–32.

Pérez, Z., de Armas Sanabria, E., Olivia Hernández, Y. (2012). Evaluación de la eficcia antiviral de nuevos fármacos candidatos a fitoproductos. REDVET. Rev Elect. Vet., 13(10), 1-14. Málaga, España.

Plaza, A., Bifulco, G., Keffer, J.L., Lloyd, J.R., Baker, H.L., Bewley, C.A. (2009). Celebesides A–C and theopapuamides B–D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem., 74(2), 504–12.

Poet, E.S., Ravi, B.N. (1982). Three new diterpenes from a soft coral Nephthea species. Aust. J. Chem., 35, 77–83.

Ponce Rey, L., Del Barrio Alonso, G., Spengler Salabarría, I., Resik Aguirre S., Roque Quintero, A. (2018). Evaluación de la actividad antiviral del alga parda Sargassum fluitans frente a Echovirus 9. Rev. Cub. Med. Trop., 70(2).

Ponce Rey, L., Spengler Salabarría, I., Rodeiro Guerra, I., Roque Quintero, A., Del Barrio Alonso, G., Resik Aguirre, S. (2021). Antiviral activity of Sargassum fluitans seaweed against echovirus 9, coxsackievirus A16 and coxsackievirus A24. Centro de Inv. Mar. Universidad de la Habana., 41(1). ISSN: 1991-6086.

Popov, A.M., Krivoshapko, O.N., Klimovich, A.A., Artyukov, A.A. (2016). Actividad biológica y mecanismos de acción terapéutica del ácido rosmarínico, luteolina y sus derivados sulfatados. Biomeditsinskaya Khimiya, 62, 22–30.

Proksch, P., Putz, A., Ortlepp, S., Kjer, J., Bayer, M. (2010).Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev., 9, 475–489.

Pujol, C.A., Sepúlveda, C.S., Richmond, V., Maier, M.S., Damonte, E.B. (2016). Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against Herpes simplex virus. Arch. Virol., 161, 1993–1999.

Qin, C., Lin, X., Lu, X., Wan, J., Zhou, X., Liao, S., Tu, Z., Xu, S., Liu, Y. (2015). Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotry sp. HH1 ZSDS1F1-2. J. Antibiot. (Tokyo), 68, 121–125.

Rabanal, M., Ponce, N.M.A., Navarro, D.A., Gómez, R.M., Stortz, C.A. (2014). The system of fucoidans from the brown seaweed Dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydr. Polym., 101, 804–811.

Rabenau, H.F., Richter, M., Doerr, H.W. (2010). Enfermedad de manos, pies y boca: Seroprevalencia de Coxsackie A16 y Enterovirus 71 en Alemania. Medicina. Microbiol. inmunol., 199, 45–51.

Ramírez, E., Suárez, S., Choquesillo, F.F., Castro, A.J., Farmacia, F.D. (2014). Actividad antioxidante, antiinflamatoria e inmunomoduladora del extracto clorofórmico de las hojas de Chuquiraga lessing “huamanpinta”. Ciencia e Investigación., 17(1): 37-42.

Raposo, M.F.D.J., De Morais, A.M.M.B., De Morais, R.M.S.C. (2014). Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci., 101, 56–63.

Rashid, M.A., Gustafson, K.R., Cartner, L.K., Shigematsu, N., Pannell, L.K., Boyd, M.R. (2001). Microspinosamide, a new HIV-inhibitory cyclic depsipeptide from the marine sponge Sidonops microspinosa. J Nat Prod., 64(1), 117–21.

Raveh, A., Delekta, P.C., Dobry, C.J., Peng, Q., Schultz, P.J., Blakely, P.K., Tai, A.W., Matainaho, T., Irani, D.N., Sherman, D.H., et al. (2013). Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS ONE, 8, e0082318.

Regalado, E.L., Menendez, R., Iglesias, O., Morales, R., Thomas, A.O., Hernandez, Y., Nogueiras, C., Kijjoa, A. (2012). Phytochemical analysis and antioxidant capacity of BM-21, a bioactive extract rich in polyphenolic metaolites from the seagrass Thalassia testudinum. Nat. Prod. Communications., 7, 47-50.

Reichert,M.,Bergmann,S.M.,Hwang,J.,Buchholz,R.yLindenberger,C.(2017).Antiviralactivityofexopolysaccharides fromArthrospiraplatensisagainstkoiherpesvirus.J.FishDis.,40,1441–1450.

Reyes de Armas, L.M. (2016). Distribución y conservación de los pastos marinos en la playa Santa Lucía, Camaguey, Cuba. Centro de Investigaciones Marinas, Universidad de La Habana, Cuba.

Reyes, H., Navarro, P., de la Parte-Pérez, M.A., Villegas, Y., Reyes-Barrios, H., Vargas, G. (2016). Agentes antivirales. Biol. Venez. Infectol., 27(2), 65-78.

Riccio, G., Ruocco, N., Mutalipassi, M., Costantini, M., Zupo, V., Coppola, D., de Pascale, D., Lauritano, C. (2020). Ten-year research update review: antiviral activities from marine organisms. Biomolecules., 10(7), 1007.

Riera, M., Marrero, D.D., Hernandez-Balmaseda, I., Gonzalez, K., Pérez-Martínez, D., Manso-Vargas, A., Vanden, W.B. (2018). Chemical Characterization and Cytotoxic Potential of a Chloroform Fraction Obtained from Marine Plant Thalassia testudinum. J. Chromatogr., 9(3).

Rinehart, K.L., Jr, Gloer, J.B., Hughes, R.G., Jr, Renis, H.E., McGovren, J.P., Swynenberg, E.B., et al. (1981). Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate. Science. 1981, 212(4497), 933–5.

Riverón Corteguera, R.L. (2002). Enfermedades emergentes y reemergentes: un reto al siglo XXI. Rev Cubana Pediatr, 74(1), 7-22.

Romano, G., Costantini, M., Sansone, C., Lauritano, C., Ruocco, N., Ianora, A. (2017). Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar. Environ. Res., 128, 58–69.

Rowley, D.C. (2001). Antiviral Natural Products from Marine Sources. Tesis de Doctorado, Universidad de California, Estados Unidos.

Rowley, D.C., Hansen, M.S.T., Rhodes, D., Sotriffer, C.A., Ni, H., McCammon, J.A., Bushman, F.D., Fenicala, W. (2002). Thalassiolins A–C: New Marine-Derived Inhibitors of HIV cDNA. Integ. Bioorg. Med. Chem., 10, 3619–3625.

Ryu, Y.B., Jeong, H.J., Yoon, S.Y., Park, J.Y., Kim, Y.M., Park, S.J., Rho, M.C., Kim, S.J., Lee, W.S. (2011). Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga Ecklonia cava. J. Agric. Food Chem., 59, 6467–6473.

Salam, K.A., Furuta, A., Noda, N., Tsuneda, S., Sekiguchi, Y., Yamashita, A., Moriishi, K., Nakakoshi, M., Tsubuki, M., Tani, H., et al. (2012). Inhibition of hepatitis C virus NS3 helicase by manoalide. J. Nat. Prod., 75, 650–654.

Salam, K.A., Furuta, A., Noda, N., Tsuneda, S., Sekiguchi, Y., Yamashita, A., Moriishi, K., Nakakoshi, M., Tsubuki, M., Tani, H., et al. (2013). Psammaplin A inhibits hepatitis C virus NS3 helicase. J. Nat. Med., 67, 765–772.

Sangeetha, B., Krishnamoorthy, A.S., Renukadevi, P., Malathi, V.G., Jeya Sundara Sharmila, D., Amirtham, D. (2020). Antiviral activity of basidiomycetous fungi againts Groundnut bud necrosis virus in tomato. Pesticide biochemistry and physiology, 166, 104570.

Santoyo, S., Jaime, L., Plaza, M., Herrero, M., Rodriguez-Meizoso, I., Ibañez, E., Reglero, G. (2012). Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J. Appl. Phycol., 24, 731–741.

Schnitzler, P., Neuner, A., Nolkemper, S., Zundel, C., Nowack, H., Sensch, K.H., Reichling, J. (2010). Antiviral activity and mode of action of propolis extracts and selected compounds. Phytother. Res., 24(1), S20-S28.

Shen, S., Li,W., Wang, J. (2013). A novel and other bioactive secondary metabolites from a marine fungus Penicilliumoxalicum 0312F1.Nat. Prod. Res., 27, 2286–2291.

Shikov, A.N., Pozharitskaya, O.N., Krishtopina, A.S., Makarov, V.G. (2018). Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Phytochem. Rev., 17, 509–534.

Shin, J., Fenical, W. (1991). Fuscosides A-D: Antiinflammatory diterpenoid glycosides of new structural classes from the Caribbean gorgonian Eunicea fusca. J. Org. Chem., 56, 3153–3158.

Shushni, M.A.M., Singh, R., Mentel, R., Lindequist, U. (2011). Balticolid: Un nuevo macrólido de 12 miembros con actividad antiviral de un hongo ascomiceto de origen marino. Mar. Drugs, 9, 844–851.

Silva, I.T., Caon, T., Lückemeyer, D.D., Ramos, F.A., Tello, E., Arévalo-Ferro, C., Schenke, E.P., Duque, C., Simões, C.M.O. (2011). Antiherpes screening ofmarine organisms fromColombian Caribbean Sea. Brazilian J. Pharmacogn., 21, 608–614.

Silva, T., Salomon, P.S., Salomon, P., Hamerski, L., Walter, J., Menezes, R., Siqueira, J.E., Santos, A., Santos, J.A.M., Ferme, N., et al. (2018). Inhibitory effect of microalgae and cyanobacteria extracts on influenza virus replication and neuraminidase activity. PeerJ, 26, e5716.

Sofowora, A., Ogunbodede, E., Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit Complement. Altern. Med., 10(5), 210-229.

Song, L., Chen, X., Liu, X., Zhang, F., Hu, L., Yue, Y., Li, K., Li, P. (2016). Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar. Drugs, 14, 4.

Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R. (2003). SARS—beginning to understand a new virus. Nat. Rev. Microbiol., 1, 209–218.

Suárez, A.M., Martínez-Daranas, B., Alfonso, Y. (2015). Macroalgas marinas en la plataforma cubana., Editorial UH. La Habana, Cuba. ISBN: 978-959-7211-44-0.

Suciati, Abdillah, I., Uddin, M.I., Fauzi, A., Adianti, M., Fuad, A. (2017). Antiviral activity of marine sponges Homaxinella tanitai and Microxina subtilis against hepatitis C virus. Res. J. Pharm. Biol. Chem. Sci., 8, 1642–1647.

Taishi, T., Takechi, S., Mori, S. (1998). Primera síntesis total de (±)-stachyflin. tetraedro Lett., 39, 4347–4350.

Tamamura, H., Xu, Y., Hattori, T., Zhang, X., Arakaki, R., Kanbara, K., et al. (1998). A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Bioch Biophys Res Communic., 253(3), 877–82.

Topiel, M.S., Simon, G.L. (1983). Vidarabine for herpes zoster. The New England Journal of medicine, 308(9), 526-527.

Trevathan-Tackett, S.M., Lane, A.L., Bishop, N., Ross, C. (2015). Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrnthula sp. Aquatic Botany., 122, 1-8.

Tziveleka, L.A., Vagias, C., Roussis, V. (2003). Natural products with anti-HIV activity from marine organisms. Curr Top Medic Chem., 3(13), 1512–35.

Visintini, J. (2014). Actividad antiviral de plantas medicinales argentinas de la familia Asteraceae. Identificación de compuestos bioactivos y caracterización del mecanismo de acción. Buenos Aires: Universidad de Buenos Aires. Argentina. http://pesquisa.bvsalud.org/portal/resource/pt/biblio-911260.

Wang, H., Ooi, E.V., Ang, P.O. (2008). Antiviral activities of extracts from Hong Kong seaweeds. J. Zhejiang Univ. Sci. B, 9, 969–976.

Wang, L., Wang, J., Wang, L., Ma, S., Liu, Y. (2015). Anti-enterovirus 71 agents of natural products. Molecules., 20, 16320-33.

Wang, S.K., Hsieh, M.K., Duh, C.Y. (2013). NewditerpenoidsfromsoftcoralSarcophytonehrenbergi. Mar. Drugs, 11, 4318–4327.

Wang, S.K., Yeh, T.T., Duh, C.Y. (2012). Briacavatolides D-F, new briaranes from the Taiwanese octocoral Briareum excavatum. Mar. Drugs,10, 2103–2110.

Wang, W., Wu, J., Hao, C., Zhao, X., Jiao, G., Shan, X., Tai, W., Yu, G. (2017). Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway. Scientific Reports, 7, 40760.

Weed, S.D., Stringfellow, D.A. (1983). Didemnins A and B. Effectiveness against cutaneous Herpes simplex virus in mice. Antiviral Res., 3(4), 269–74.

White, K.M., Rosales, R., Yildiz, S., Kehrer, T., Miorin, L., Moreno, E., Jangra, S., Uccellini, M.B., Rathnasinghe, R., Coughlan, L., Martinez- Romero, C., Batra, J., Rojc, A., Bouhaddou, M., Fabius, J.M., Obernier, K., Dejosez, M., Guillén, M.J., Losada, A., Avilés, P., … García -Sastre, A. (2021). La plitidepsina tiene una potente eficacia preclínica contra el SARS-CoV-2 al dirigirse a la proteína huésped eEF1A. Science (Nueva York, NY), 371 (6532), 926–931.

Whitley, R., Alford, C., Hess, F., Buchanan, R. (1980). Vidarabine: a preliminary review of its pharmacological properties and therapeutic use. Drugs, 20(4), 267-282.

Wijanarko, A., Lischer, K., Hermansyah, H., Pratami, D.K., Sahlan, M. (2018). Antiviral activity of Acanthaster planci phospholipase A2 against human immunodeficiency virus. Vet. World, 11, 824–829.

Xin, Y., Li, W., Lu, L., Zhou, L., Victor, D.W., Xuan, S. (2016). Antiviral effects of Stichopus japonicus acid mucopolysaccharideonhepatitisBvirustransgenicmice.J.OceanUniv. China,15, 719–725.

Yamashita, A., Fujimoto, Y., Tamaki, M., Setiawan, A., Tanaka, T., Okuyama-Dobashi, K., Kasai, H., Watashi, K., Wakita, T., Toyama, M., et al. (2015). Identification of antiviral agents targeting hepatitis B virus promoter from extracts of Indonesian marine organisms by a novel cell-based screening assay. Mar. Drugs, 13, 6759–6773.

Yamashita, A., Tamaki, M., Kasai, H., Tanaka, T., Otoguro, T., Ryo, A., Maekawa, S., Enomoto, N., de Voogd, N.J., Tanaka, J., et al. (2017). Inhibitory e_ects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral Res., 145, 136–145.

Yang, Y., Xiu, J., Liu, J., Zhang, L., Li, X., Xu, Y. (2013). Chebulagic acid, hydrolyzable tannin, exhibited antiviral activity in vitro and in vivo against human enterovirus 71. Int J Mol Sci., 14, 9618-27.

Yeh, T.T., Wang, S.K., Dai, C.F., Duh, C.Y. (2012). Briacavatolides A-C, New briaranes from the Taiwanese octocoral Briareum excavatum. Mar. Drugs, 10, 1019–1026.

Yende, S., Harle, U., Chaugule, B. (2014). Therapeutic potential and health benefits of Sargassum species. Pharmacogn Rev., 8(15), 1-7.

Yero, L.E., Rodríguez, Y.F., Pérez, N.D.S. (2017). Caracterización fitoquímica y bromatológica de la Thalassia testudinum usada en alimentación de ovinos pelibuey de Cuba (Ovis aries). Ciencia y Futuro., 7(3).

Youssef, F.S., Ashur, M.L., Singab, A.N.B., Wink, M. (2019). Una revisión exhaustiva de los péptidos bioactivos de Hongos marinos y su significado biológico. Mar. Drugs, 17, 559.

Zanjani, N.T., Miranda-Saksena, M., Valtchev, P., Diefenbach, R.J., Hueston, L., Diefenbach, E., Sairi, F., Gomes, V.G., Cunningham, A.L., Dehghani, F. (2016). Abalone hemocyanin blocks the entry of herpes simplex virus 1 into cells: A potential new antiviral strategy. Antimicrob. Agents Chemother., 60, 1003–1012.

Zheng, C.J., Shao, C.L., Guo, Z.Y., Chen, J.F., Deng, D.S., Yang, K.L., Chen, Y.Y., Fu, X.M., ella, Z.G., Lin, Y.C., et al. (2012). Hidroantraquinonas y dímeros de antraquinona bioactivos de una Alternaria sp. derivada de un coral blando. hongo. J.Nat. Pinchar., 75, 189–197.

Zheng, S.C., Xu, J.Y., Liu, H.P. (2019). Cellular entry of white spot syndrome virus and antiviral immunity mediated by cellular receptors in crustaceans. Fish Shellfish Immunol., 93, 580–588.

Descargas

Publicado

30-01-2023

Cómo citar

Casanova-Nodarse, E., Rodeiro Guerra, I., & Ponce Rey, L. de R. (2023). Potencialidades como antivirales de compuestos de origen marino: una revisión . Revista De Investigaciones Marinas, 42(2), 67–91. Recuperado a partir de https://revistas.uh.cu/rim/article/view/1147

Número

Sección

Artículos de revisión

Artículos más leídos del mismo autor/a