Construcción de matrices MDS combinando los esquemas Feistel y Lai-Massey
Palabras clave:
Difusión, Matriz involutiva, Matriz casi involutiva, Matriz MDSResumen
En criptografía, las matrices separables por distancia máxima (MDS) son un elemento estructural importante para proporcionar la propiedad de difusión en los cifrados de bloques, cifrados de flujo y funciones hash. Descubrir nuevos tipos de transformaciones que puedan generar una serie de nuevas matrices MDS que puedan usarse en la práctica no es una tarea trivial. En este artículo proponemos nuevos métodos para construir matrices combinando las conocidas estructuras de Feistel y Lai-Massey.Descargas
Citas
Adnan B. Mustafa C. and Mehmet O. Feistel Like Construction of Involutory Binary Matrices With High Branch Number. Cryptology ePrint Archive, Report 2016/751.
Alferyorov A. P. Zubov A. Y. Kuzmin A. S. Cheryomushkin A. V. Basics of the cryptography. Gelios ARV. 2001. (In Russian)
Boyar J., Matthews P., Peralta R.: Logic minimization techniques with applications to cryptology. J. Cryptology, 26(2):280–312, 2013. [4] C. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28(4), 1949
Dmitry Burov, Boris, Pogorelov. The influence of linear mapping reducibility on choice of round constants. CTCcrypt 216
Duval S. and Leurent G.: MDS Matrices with Lightweight Circuits. In FSE, volume 2018, pages 48-78. Springer, 2018.
Glukhov M. M., Elizarov V. P., Nechaev A. A. Algebra. LAN. 2015. 595 p. (In Russian)
Hong X., Lin T. Xuejia L. On the recursive construction of MDS matrices for ligtweight Cryptography
H. M. Heys, and S. E. Tavares,The Design of Substitution-Permutation Networks Resistatnt to Diferential and Linear Cryptanalysis, Proceedings of 2nd ACM Conference on Computer and Communications Security, Fairfax, Virginia, pp. 148-155, 1994.
H. M. Heys, and S. E. Tavares,The Design of Product Ciphers Resistatnt to Diferential and Linear Crypt-analysis, Journal Of Cryptography, Vol. 9, No. 1, pp. 1-19, 1996
H. M. Heys, and S. E. Tavares,Avalanche Characteristics of Substitution-Permutation Encryption Networks.
Gupta, K.C., Ray, I.G.: On Constructions of MDS Matrices from Companion Matrices for Lightweight Cryptography. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 29–43. Springer, Heidelberg (2013).
Junod P. and Vaudenay S.: Perfect Diffusion Primitives for Block Ciphers Building Efficient MDS Matrices, Selected Areas in Cryptography 2004: Waterloo, Canada, August 9-10,2004. Revisited papers,LNCS. SpringerVerlag. Journal Information Security Practice and Experience, Springer pp 552-563. 2014.
Jorge N. and Elcio A. A New Involutory MDS Matrix for the AES. International Journal of Network Security, Vol.9, No.2, PP.109–116, 2009
Jian G., Thomas P. and Axel P. The PHOTON Family of Lightweight Hash Functions. Cryptology ePrint Archive, Report 2011/609.
Kishan C. G., Sumit K. P. and Ayineedi Venkateswarlu. On the direct construction of recursive MDS matrices. Springer 2016.
Kranz H., Leander G., Stoffelen K., and Wiemer F. Shorter Linear Straight-Line Programs for MDS Matrices. In FSE, volume 2017, pages 188-211. Springer, 2017.
Lidl, R., and Niederreiter, H. Finite Fields, vol. 20 of Encyclopedia of Mathematics
Mahdi S. and Mohsen M. Construction of Lightweight MDS Matrices from Generalized Feistel Structures. Cryptology ePrint Archive, Report 2018/1072.
Mahdi S., Mohammad D., Hamid M. and Behnaz O. On construction of involutory MDS matrices from Vandermonde Matrices in GF(2q). Springer. Published November 2011.
NIST. Advanced Encryption Standard. Federal Information Processing Standard (FIPS) 197,November 2001.
Sajadieh M., and Mousavi M.: Construction of Lightweight MDS Matrices from Generalized Feistel Structures. Cryptology ePrint Archive, Report 2018/1072.
Shun Li1, Siwei Sun1, Chaoyun Li Zihao Wei1 and Lei Hu1: Constructing Low-latency Involutory MDS Matrices with Lightweight Circuits. In FSE. Springer, 2019.
Descargas
Publicado
Versiones
- 2019-06-27 (6)
- 2024-03-28 (5)
- 2024-03-26 (4)
- 2024-03-26 (3)
- 2024-03-26 (2)
- 2024-03-26 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Ciencias Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta licencia permite copiar y redistribuir el material en cualquier medio o formato bajo los siguientes términos: se debe dar crédito de manera adecuada, no se puede hacer uso del material con propósitos comerciales, y si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado. Bajo la licencia mencionada, los autores mantienen los derechos de autor de su trabajo.

