Análisis morfológico de muestras de HUVEC empleando funciones basadas en geometría integral

Autores/as

  • Miriela Escobedo Nicot Departamento de Computación, Universidad de Oriente, Santiago de Cuba, Cuba
  • Silena Herold García Departamento de Computación, Universidad de Oriente, Santiago de Cuba, Cuba
  • Ligia Ferreira Gomez Departamento de Análisis Clínicos y Toxicológicos, Universidad de S˜ao Paulo, S˜ao Paulo, Brasil
  • Camila Machado Departamento de Fisiopatologia Experimental, Faculdade de Medicina, Universidade de S˜ao Paulo, S˜ao Paulo, Brasil
  • Elisângela Monteiro Pereira Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Minas Gerais, Brasil
  • Wilkie Delgado Font Departamento de Computación, Universidad de Oriente, Santiago de Cuba, Cuba

Palabras clave:

Clasificación de formas, Geometría integral, Angiogénesis, HUVEC

Resumen

El análisis morfológico de estructuras en imágenes digitales de muestras biológicas reviste gran interés para el mundo científico. En la rama de la medicina puede ofrecer resultados muy útiles en el estudio de diversas enfermedades o condiciones en el ser humano, así como en la valoración de los posibles efectos de diferentes tipos de intervenciones como agentes farmacológicos. En este trabajo nos centramos en la posibilidad de obtener una clasificación morfológica eficiente en imágenes de culturas in vitro bidimensionales de células endoteliales de venas de cordón umbilical humano (HUVEC) bajo la influencia de la b2 - glicoproteína I (b2GPI) para estudio de la angiogénesis. Se muestran los excelentes resultados obtenidos en la clasificación supervisada de células en circulares, deformadas elongadas (elongadas) o deformadas poco elongadas (otras deformaciones), empleando funciones basadas en geometría integral para el análisis morfológico. Los bordes celulares se detectaron empleando métodos de contornos activos y se utilizó el método k-NN para clasificación con un proceso de validaci ón cruzada de 5x1 para estimación del error. Las muestras fueron preparadas por especialistas, que además determinaron los tipos de células de cada clase.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

S. R. McDougall, A. R. Anderson, and M. A. Chaplain, “Mathematical modelling of dynamic adaptive tumourinduced angiogenesis: clinical implications and therapeutic targeting strategies,” Journal of theoretical biology, vol. 241, no. 3, pp. 564–589, 2006.

R. Auerbach, W. Auerbach, and I. Polakowski, “Assays for angiogenesis: a review,” Pharmacology & therapeutics, vol. 51, no. 1, pp. 1–11, 1991.

M. Bahramsoltani, J. Plendl, P. Janczyk, P. Custodis, and S. Kaessmeyer, “Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivo and in vitro–an overview,” Altex, vol. 26, no. 2, p. 95, 2009.

E. A. Jaffe, R. L. Nachman, C. G. Becker, and C. R. Minick, “Culture of human endothelial cells derived from umbilical veins. identification by morphologic and immunologic criteria,” Journal of Clinical Investigation, vol. 52, no. 11, p. 2745, 1973.

D. Guidolin, G. Albertin, and D. Ribatti, “Exploring in vitro angiogenesis by image analysis and mathematical modeling,” Microscopy: science, technology, applications and education, vol. 2, pp. 876–884, 2010.

C. P. Khoo, K. Micklem, and S. M.Watt, “A comparison of methods for quantifying angiogenesis in the matrigel assay in vitro,” Tissue Engineering Part C: Methods, vol. 17, no. 9, pp. 895–906, 2011.

M.-L. Boizeau, P. Fons, L. Cousseins, J. Desjobert, D. Sibrac, C. Michaux, A.-L. Nestor, B. Gautret, K. Neil, C. Herbert, et al., “Automated image analysis of in vitro angiogenesis assay,” Journal of laboratory automation, p. 2211068213495204, 2013.

I. Valavanis, T. Goudas, M. Michailidou, I. Maglogiannis, H. Loutrari, and A. Chatziioannou, “A novel image analysis methodology for the evaluation of angiogenesis in matrigel assays and screening of angiogenesismodulating compounds,” in IFIP International Conference on Artificial Intelligence Applications and Innovations, pp. 61–71, Springer, 2015.

C. Balsat, S. Blacher, N. Singolle, F. Kridelka, and A. No¨el, “Image analysis characterization of the lymph/angiogenesis in experimental models and clinical studies,” Acta Stereologica, 2015.

L.-K. Phng and H. Gerhardt, “Angiogenesis: a team effort coordinated by notch,” Developmental cell, vol. 16, no. 2, pp. 196–208, 2009.

E. Dejana, E. Tournier-Lasserve, and B. M. Weinstein, “The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications,” Developmental cell, vol. 16, no. 2, pp. 209–221, 2009.

E. Montanez, R. P. Casaroli-Marano, S. Vilaro, and R. Pagan, “Comparative study of tube assembly in threedimensional collagen matrix and on matrigel coats,” Angiogenesis, vol. 5, no. 3, pp. 167–172, 2002.

A. Niemisto, V. Dunmire, O. Yli-Harja, W. Zhang, and I. Shmulevich, “Robust quantification of in vitro angiogenesis through image analysis,” IEEE transactions on medical imaging, vol. 24, no. 4, pp. 549–553, 2005.

A. F. Santos, A. B. Zaltsman, R. C. Martin, A. Kuzmin, Y. Alexandrov, E. P. Roquemore, R. A. Jessop, M. G. M. v. Erck, and J. H. Verheijen, “Angiogenesis: an improved in vitro biological system and automated image-based workflow to aid identification and characterization of angiogenesis and angiogenic modulators,” Assay and drug development technologies, vol. 6, no. 5, pp. 693–710, 2008.

J. Angulo and S. Matou, “Application of mathematical morphology to the quantification of in vitro endothelial cell organization into tubular-like structures,” Cellular and Molecular Biology, vol. 53, no. 2, pp. 22–35, 2007.

R. Chotard-Ghodsnia, O. Haddad, A. Leyrat, A. Drochon, C. Verdier, and A. Duperray, “Morphological analysis of tumor cell/endothelial cell interactions under shear flow,” Journal of biomechanics, vol. 40, no. 2, pp. 335–344, 2007.

M.-C. Liu, H.-C. Shih, J.-G. Wu, T.-W. Weng, C.-Y. Wu, J.-C. Lu, and Y.-C. Tung, “Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations,” Lab on a Chip, vol. 13, no. 9, pp. 1743–1753, 2013.

D. Zhang and G. Lu, “Review of shape representation and description techniques,” Pattern recognition, vol. 37, no. 1, pp. 1–19, 2004.

X. Gual-Arnau, S. Herold-García, and A. Simó, “Shape description from generalized support functions,” Pattern Recognition Letters, vol. 34, pp. 619–626, 2013.

R. Delin, Topics in Integral Geometry. World Scientific, Singapore, 1994.

X. Gual-Arnau, S. Herold-García, and A. Simó, “Erythrocyte shape classification using integral-geometrybased methods,” Medical & biological engineering & computing, vol. 53, no. 7, pp. 623–633, 2015.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Activecontour models,” International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations,” Journal of computational physics, vol. 79, no. 1, pp. 12–49, 1988.

L. A. Stoyan and H. Stoyan, Fractals, Random Shapes and Point Fields. John Wiley and Sons, 1995.

V. Kindratenko, “On using functions to describe the shapes,” J. Math. Imaging Vision, vol. 18, pp. 225–245, 2003.

X. Gual-Arnau, S. Herold-García, and A. Simó, “Shape description from generalized support functions,” Pattern Recognition Letters, vol. 34, no. 6, pp. 619–626, 2013.

L. Santaló, Integral Geometry and Geometric Probability. Addison-Wesley, 1976.

H. Gundersen, E. Jensen, K. Kieu, and J. Nielsen, “The efficiency of systematic sampling in stereology reconsidered,” Journal of Microscopy, vol. 193, pp. 199–211, 1999.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inform. Theory, vol. 13, pp. 21–27, 1967.

M. Nixon and A. Aguado, Feature Extraction and Image Processing. Academic Press, 2008.

F. Ferri and E. Vidal, Comparison of several editing and condensing techniques for colour image segmentation and object location. In Pattern Recognition and Image Analysis, Series in Machine Perception and Artificial Intelligence. World Scientific, 1992.

S. V. Stehman, “Selecting and interpreting measures of thematic classification accuracy,” Remote Sensing of Environment, vol. 62, no. 1, pp. 77–89, 1997.

Descargas

Publicado

2016-06-01 — Actualizado el 2025-04-29

Versiones

Cómo citar

[1]
Escobedo Nicot, M. et al. 2025. Análisis morfológico de muestras de HUVEC empleando funciones basadas en geometría integral. Ciencias matemáticas. 30, 2 (abr. 2025), 79–86.

Número

Sección

Artículo Original