Activación del Surco Intraparietal bilateral durante la adaptación numérica medida por fNIRS: validación de una tarea experimental en una muestra bicultural.

Autores/as

  • Daniela Escobar Magariño Facultad de Psicología, Universidad de La Habana https://orcid.org/0000-0001-7825-0171
  • Qinghua He Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Research Associaton for Brain and Mathematical Learning, Beijing Nornal University, Beijing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China https://orcid.org/0000-0001-6396-6273

Palabras clave:

adaptación numérica, fNIRS, SIP bilateral, nativos árabes, nativos chinos

Resumen

El paradigma de adaptación neural constituye un enfoque clave para el estudio del procesamiento numérico. A pesar de las múltiples ocasiones en las que este ha sido empleado en dicho campo de investigación, no existen muchas experiencias que combinen este paradigma con la Espectroscopía de Infrarrojo Cercano funcional (fNIRS) como método de neuroimágenes para medir la actividad del Surco Intraparietal (SIP) durante la adaptación numérica. En la presente investigación evaluamos la validez de una versión del paradigma de adaptación neural para generar activación en el Surco Intraparietal bilateral que sea medible a través de fNIRS en una muestra de nativos chinos y nativos árabes. Para ellos, 4 estudiantes universitarios nativos del chino y 4 estudiantes universitarios nativos del árabe, completaron la tarea diseñada, mientras se medía la actividad en la corteza parietal con fNIRS. La actividad del Surco Intraparietal detectada durante la realización de la tarea diseñada fue media; lo cual podría estar relacionado con limitaciones del aparato, que aumentan el ruido de la señal y disminuyen el poder estadístico de los datos; o a algunas variables que no fueron debidamente controladas durante la aplicación de la tarea. En función de estas conclusiones, se realizaron modificaciones a la tarea, y al diseño de la investigación que la empleará como instrumento.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Daniela Escobar Magariño, Facultad de Psicología, Universidad de La Habana

Licenciada en Psicología por la Facultad de Psicología de la Universidad de La Habana. Máster en Psicología Aplicada por la Universidad del Suroeste, Chongqing, China. Actualmente se desempeña como profesora asistente de la Facultad de Psicología de la Universidad de La Habana, donde imparte docencia de pregrado en la línea de Neuropsicología y Neurociencias.

Qinghua He, Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Research Associaton for Brain and Mathematical Learning, Beijing Nornal University, Beijing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China

Se doctoró en la Universidad Normal de Pekín y terminó su postdoctorado en la Universidad del Sur de California, es ahora profesor de "jóvenes talentos de Hanhong" en la Universidad del Suroeste. Dirige el laboratorio "Decision Neuroscience and Addiction Prevention" en la Facultad de Psicología de la Universidad del Sudoeste. Fue galardonado con el premio "Chongqing Talents" en 2019.

Citas

ANSARI, D. (2010). Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: The perils of neglecting the role of development. Learning and Individual Differences, 20(2), 123–129. https://doi.org/10.1016/j.lindif.2009.06.001

BROZZOLI, C., GENTILE, G., PETKOVA, V. I., & EHRSSON, H. H. (2011). FMRI adaptation reveals a cortical mechanism for the coding of space near the hand. Journal of Neuroscience, 31(24), 9023–9031. https://doi.org/10.1523/JNEUROSCI.1172-11.2011

BUGDEN, S., PRICE, G. R., MCLEAN, D. A., & ANSARI, D. (2012). The role of the left intraparietal sulcus in the relationship between symbolic number processing and children’s arithmetic competence. Developmental Cognitive Neuroscience, 2(4), 448–457. https://doi.org/10.1016/j.dcn.2012.04.001

CANTLON, J. F., BRANNON, E. M., CARTER, E. J., & PELPHREY, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), 844–854. https://doi.org/10.1371/journal.pbio.0040125

CANTLON, J. F., PLATT, M. L., & BRANNON, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83–91. https://doi.org/10.1016/j.tics.2008.11.007

CAPPELLETTI, M., LEE, H. L., FREEMAN, E. D., & PRICE, C. J. (2009). The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers. Journal of Cognitive Neuroscience, 22(2), 331–346.

CASTALDI, E., AAGTEN-MURPHY, D., TOSETTI, M., BURR, D., & MORRONE, M. C. (2016). Effects of adaptation on numerosity decoding in the human brain. NeuroImage, 143, 364–377. https://doi.org/10.1016/j.neuroimage.2016.09.020

COHEN KADOSH, R., BAHRAMI, B., WALSH, V., BUTTERWORTH, B., POPESCU, T., & PRICE, C. J. (2011). Specialization in the human brain: The case of numbers. Frontiers in Human Neuroscience, 5(JULY), 1–9. https://doi.org/10.3389/fnhum.2011.00062

COHEN KADOSH, R., COHEN KADOSH, K., KAAS, A., HENIK, A., & GOEBEL, R. (2007). Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes. Neuron, 53(2), 307–314. https://doi.org/10.1016/j.neuron.2006.12.025

CONTRERAS, J. M., BANAJI, M. R., & MITCHELL, J. P. (2019). Los patrones multivóxeles en el área fusiforme de la cara distinguen los rostros por sexo y por raza.

COPE, M., & DEPLY, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical & Biological Engineering & Computing, 26, 289–294.

DEHAENE, S., IZARD, V., & PIAZZA, M. (2005). Control over non-numerical parameters in numerosity experiments.

DEHAENE, S., PIAZZA, M., PINEL, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. https://doi.org/10.1080/02643290244000239

DEHAENE, STANISLAS, & COHEN, L. (1995). Towards an Anatomical and Functional Model of Number. Mathematical Cognition, 1, 83–120.

DUFOR, O., & RAPP, B. (2013). Letter representations in writing: an fMRI adaptation approach. Frontiers in Psychology, 4(October), 1–14. https://doi.org/10.3389/fpsyg.2013.00781

EDWARDS, L. A., WAGNER, J. B., SIMON, C. E., & HYDE, D. C. (2016). Functional brain organization for number processing in pre-verbal infants. Developmental Science, 19(5), 757–769. https://doi.org/10.1111/desc.12333

EGER, E., STERZER, P., RUSS, M. O., GIRAUD, A. L., & KLEINSCHMIDT, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719–726. https://doi.org/10.1016/S0896-6273(03)00036-9

ESCOBAR-MAGARIÑO, D., TUREL, O., & He, Q. (2022). Bilateral Intraparietal Activation for Number Tasks in Studies Using Adaptation Paradigm: A Meta-analysis. Neuroscience, 490, 296–308. https://doi.org/10.1016/j.neuroscience.2022.02.024

FEIGENSON, L., DEHAENE, S., & SPELKE, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002

GANAYIM, D., GANAYIM, S., DOWKER, A., & OLKUN, S. (2020). Linguistic Effects on the Processing of Two-Digit Numbers. 49–69. https://doi.org/10.4236/ojml.2020.101004

GEBUIS, T., & REYNVOET, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648. https://doi.org/10.1037/a0026218

GOFFIN, C., SOKOLOWSKI, H. M., SLIPENKYJ, M., & ANSARI, D. (2019). Does writing handedness affect neural representation of symbolic number? An fMRI adaptation study. Cortex, 121, 27–43. https://doi.org/10.1016/j.cortex.2019.07.017

GRILL-SPECTOR, K., & MALACH, R. (2001). fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1–3), 293–321. https://doi.org/10.1016/S0001-6918(01)00019-1

HOLLOWAY, I. D., & ANSARI, D. (2010). Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude. Journal of Cognitive Neuroscience, 22(11), 2627–2637. https://doi.org/10.1162/jocn.2009.21399

HOLLOWAY, I. D., BATTISTA, C., VOGEL, S. E., & ANSARI, D. (2013). Semantic and perceptual processing of number symbols: Evidence from a cross-linguistic fMRI adaptation study. Journal of Cognitive Neuroscience, 25(3), 388–400. https://doi.org/10.1162/jocn_a_00323

HSU, Y. F., & SZUCS, D. (2012). The time course of symbolic number adaptation: Oscillatory EEG activity and event-related potential analysis. NeuroImage, 59(4), 3103–3109. https://doi.org/10.1016/j.neuroimage.2011.11.017

HYDE, D. C., BOAS, D. A., BLAIR, C., & CAREY, S. (2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647–652. https://doi.org/10.1016/j.neuroimage.2010.06.030

Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360–371. https://doi.org/10.1111/j.1467-7687.2010.00987.x

Hyde, D. C., & Spelke, E. S. (2012). Spatiotemporal dynamics of processing nonsymbolic number: An event-related potential source localization study. Human Brain Mapping, 33(9), 2189–2203. https://doi.org/10.1002/hbm.21352

JACOB, S. N., & NIEDER, A. (2009). Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience, 30(7), 1432–1442. https://doi.org/10.1111/j.1460-9568.2009.06932.x

KARMILOFF-SMITH, A. (2010). Neuroimaging of the developing brain: Taking “developing” seriously. Human Brain Mapping, 31(6), 934–941. https://doi.org/10.1002/hbm.21074

KERSEY, A. J., & CANTLON, J. F. (2017). Neural tuning to numerosity relates to perceptual tuning in 3– 6-year-old children. Journal of Neuroscience, 37(3), 512–522. https://doi.org/10.1523/JNEUROSCI.0065-16.2016

LI, Y., CHEN, R., TUREL, O., FENG, T., ZHU, C. Z., & HE, Q. (2021). Dyad sex composition effect on inter-brain synchronization in face-to-face cooperation. Brain Imaging and Behavior, 15(3), 1667–1675. https://doi.org/10.1007/s11682-020-00361-z

NIEDER, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6(3), 177–190. https://doi.org/10.1038/nrn1626

NOTEBAERT, K., NELIS, S., & REYNVOET, B. (2011). The magnitude representation of small and large symbolic numbers in the left and right hemisphere: An event-related fMRI study. Journal of Cognitive Neuroscience, 23(3), 622–630. https://doi.org/10.1162/jocn.2010.21445

PIAZZA, M., IZARD, V., PINEL, P., LE BIHAN, D., & DEHAENe, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. https://doi.org/10.1016/j.neuron.2004.10.014

PIAZZA, M., PINEL, P., LE BIHAN, D., & DEHAENE, S. (2007). A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53(2), 293–305. https://doi.org/10.1016/j.neuron.2006.11.022

PINEL, P., DEHAENE, S., RIVIÈRE, D., & LEBIHAN, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026. https://doi.org/10.1006/nimg.2001.0913

REIGOSA-CRESPO, V., VALDÉS-SOSA, M., BUTTERWORTH, B., ESTÉVEZ, N., RODRÍGUEZ, M., SANTOS, E., TORRES, P., SUÁREZ, R., & LAGe, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123–135. https://doi.org/10.1037/a0025356

ROGGEMAN, C., SANTENS, S., FIAS, W., & VERGUTS, T. (2011). Stages of nonsymbolic number processing in occipitoparietal cortex disentangled by fMRI adaptation. Journal of Neuroscience, 31(19), 7168–7173. https://doi.org/10.1523/JNEUROSCI.4503-10.2011

SOLTÉZS, F., SZŰCS, D., & SZŰCS, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(13), 1–14.

TAK, S., & YE, J. C. (2011). NIRS-SPM: Statistical Parametric Mapping for Near-infrared Spectroscopy (pp. 1–54). Bio Imaging Signal Processing (BISP) Lab. Dept. of Bio and Brain Engineering, KAIST.

VENKATRAMAN, V., ANSARI, D., & CHEE, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753. https://doi.org/10.1016/j.neuropsychologia.2004.08.005

VOGEL, S. E., GOFFIN, C., & ANSARI, D. (2015). Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study. Developmental Cognitive Neuroscience, 12(1), 61–73. https://doi.org/10.1016/j.dcn.2014.12.001

VOGEL, S. E., GOFFIN, C., BOHNENBERGER, J., KOSCHUTNIG, K., REISHOFER, G., GRABNER, R. H., & ANSARI, D. (2017). The left intraparietal sulcus adapts to symbolic number in both the visual and auditory modalities: Evidence from fMRI. NeuroImage, 153, 16–27. https://doi.org/10.1016/j.neuroimage.2017.03.048

XU, F., & SPELKE, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1–11. https://doi.org/10.1016/S0010-0277(99)00066-9

YEE, E., DRUCKER, D. M., & THOMPSON-SCHILL, S. L. (2010). fMRI-adaptation evidence of overlapping neural representations for objects related in function or manipulation. NeuroImage, 50(2), 753–763. https://doi.org/10.1016/j.neuroimage.2009.12.036

YU, M., MO, C., LI, Y., & MO, L. (2015). Distinct representations of syllables and phonemes in Chinese production: Evidence from fMRI adaptation. Neuropsychologia, 77, 253–259. https://doi.org/10.1016/j.neuropsychologia.2015.08.027

Descargas

Publicado

2023-06-26

Cómo citar

Escobar Magariño, D., & He, Q. (2023). Activación del Surco Intraparietal bilateral durante la adaptación numérica medida por fNIRS: validación de una tarea experimental en una muestra bicultural. Revista Cubana De Psicología, 5(7). Recuperado a partir de https://revistas.uh.cu/psicocuba/article/view/6106