Activación del Surco Intraparietal bilateral durante la adaptación numérica medida por fNIRS: validación de una tarea experimental en una muestra bicultural.
Palabras clave:
adaptación numérica, fNIRS, SIP bilateral, nativos árabes, nativos chinosResumen
El paradigma de adaptación neural constituye un enfoque clave para el estudio del procesamiento numérico. A pesar de las múltiples ocasiones en las que este ha sido empleado en dicho campo de investigación, no existen muchas experiencias que combinen este paradigma con la Espectroscopía de Infrarrojo Cercano funcional (fNIRS) como método de neuroimágenes para medir la actividad del Surco Intraparietal (SIP) durante la adaptación numérica. En la presente investigación evaluamos la validez de una versión del paradigma de adaptación neural para generar activación en el Surco Intraparietal bilateral que sea medible a través de fNIRS en una muestra de nativos chinos y nativos árabes. Para ellos, 4 estudiantes universitarios nativos del chino y 4 estudiantes universitarios nativos del árabe, completaron la tarea diseñada, mientras se medía la actividad en la corteza parietal con fNIRS. La actividad del Surco Intraparietal detectada durante la realización de la tarea diseñada fue media; lo cual podría estar relacionado con limitaciones del aparato, que aumentan el ruido de la señal y disminuyen el poder estadístico de los datos; o a algunas variables que no fueron debidamente controladas durante la aplicación de la tarea. En función de estas conclusiones, se realizaron modificaciones a la tarea, y al diseño de la investigación que la empleará como instrumento.
Descargas
Citas
ANSARI, D. (2010). Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: The perils of neglecting the role of development. Learning and Individual Differences, 20(2), 123–129. https://doi.org/10.1016/j.lindif.2009.06.001
BROZZOLI, C., GENTILE, G., PETKOVA, V. I., & EHRSSON, H. H. (2011). FMRI adaptation reveals a cortical mechanism for the coding of space near the hand. Journal of Neuroscience, 31(24), 9023–9031. https://doi.org/10.1523/JNEUROSCI.1172-11.2011
BUGDEN, S., PRICE, G. R., MCLEAN, D. A., & ANSARI, D. (2012). The role of the left intraparietal sulcus in the relationship between symbolic number processing and children’s arithmetic competence. Developmental Cognitive Neuroscience, 2(4), 448–457. https://doi.org/10.1016/j.dcn.2012.04.001
CANTLON, J. F., BRANNON, E. M., CARTER, E. J., & PELPHREY, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), 844–854. https://doi.org/10.1371/journal.pbio.0040125
CANTLON, J. F., PLATT, M. L., & BRANNON, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83–91. https://doi.org/10.1016/j.tics.2008.11.007
CAPPELLETTI, M., LEE, H. L., FREEMAN, E. D., & PRICE, C. J. (2009). The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers. Journal of Cognitive Neuroscience, 22(2), 331–346.
CASTALDI, E., AAGTEN-MURPHY, D., TOSETTI, M., BURR, D., & MORRONE, M. C. (2016). Effects of adaptation on numerosity decoding in the human brain. NeuroImage, 143, 364–377. https://doi.org/10.1016/j.neuroimage.2016.09.020
COHEN KADOSH, R., BAHRAMI, B., WALSH, V., BUTTERWORTH, B., POPESCU, T., & PRICE, C. J. (2011). Specialization in the human brain: The case of numbers. Frontiers in Human Neuroscience, 5(JULY), 1–9. https://doi.org/10.3389/fnhum.2011.00062
COHEN KADOSH, R., COHEN KADOSH, K., KAAS, A., HENIK, A., & GOEBEL, R. (2007). Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes. Neuron, 53(2), 307–314. https://doi.org/10.1016/j.neuron.2006.12.025
CONTRERAS, J. M., BANAJI, M. R., & MITCHELL, J. P. (2019). Los patrones multivóxeles en el área fusiforme de la cara distinguen los rostros por sexo y por raza.
COPE, M., & DEPLY, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical & Biological Engineering & Computing, 26, 289–294.
DEHAENE, S., IZARD, V., & PIAZZA, M. (2005). Control over non-numerical parameters in numerosity experiments.
DEHAENE, S., PIAZZA, M., PINEL, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. https://doi.org/10.1080/02643290244000239
DEHAENE, STANISLAS, & COHEN, L. (1995). Towards an Anatomical and Functional Model of Number. Mathematical Cognition, 1, 83–120.
DUFOR, O., & RAPP, B. (2013). Letter representations in writing: an fMRI adaptation approach. Frontiers in Psychology, 4(October), 1–14. https://doi.org/10.3389/fpsyg.2013.00781
EDWARDS, L. A., WAGNER, J. B., SIMON, C. E., & HYDE, D. C. (2016). Functional brain organization for number processing in pre-verbal infants. Developmental Science, 19(5), 757–769. https://doi.org/10.1111/desc.12333
EGER, E., STERZER, P., RUSS, M. O., GIRAUD, A. L., & KLEINSCHMIDT, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719–726. https://doi.org/10.1016/S0896-6273(03)00036-9
ESCOBAR-MAGARIÑO, D., TUREL, O., & He, Q. (2022). Bilateral Intraparietal Activation for Number Tasks in Studies Using Adaptation Paradigm: A Meta-analysis. Neuroscience, 490, 296–308. https://doi.org/10.1016/j.neuroscience.2022.02.024
FEIGENSON, L., DEHAENE, S., & SPELKE, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002
GANAYIM, D., GANAYIM, S., DOWKER, A., & OLKUN, S. (2020). Linguistic Effects on the Processing of Two-Digit Numbers. 49–69. https://doi.org/10.4236/ojml.2020.101004
GEBUIS, T., & REYNVOET, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648. https://doi.org/10.1037/a0026218
GOFFIN, C., SOKOLOWSKI, H. M., SLIPENKYJ, M., & ANSARI, D. (2019). Does writing handedness affect neural representation of symbolic number? An fMRI adaptation study. Cortex, 121, 27–43. https://doi.org/10.1016/j.cortex.2019.07.017
GRILL-SPECTOR, K., & MALACH, R. (2001). fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1–3), 293–321. https://doi.org/10.1016/S0001-6918(01)00019-1
HOLLOWAY, I. D., & ANSARI, D. (2010). Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude. Journal of Cognitive Neuroscience, 22(11), 2627–2637. https://doi.org/10.1162/jocn.2009.21399
HOLLOWAY, I. D., BATTISTA, C., VOGEL, S. E., & ANSARI, D. (2013). Semantic and perceptual processing of number symbols: Evidence from a cross-linguistic fMRI adaptation study. Journal of Cognitive Neuroscience, 25(3), 388–400. https://doi.org/10.1162/jocn_a_00323
HSU, Y. F., & SZUCS, D. (2012). The time course of symbolic number adaptation: Oscillatory EEG activity and event-related potential analysis. NeuroImage, 59(4), 3103–3109. https://doi.org/10.1016/j.neuroimage.2011.11.017
HYDE, D. C., BOAS, D. A., BLAIR, C., & CAREY, S. (2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647–652. https://doi.org/10.1016/j.neuroimage.2010.06.030
Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360–371. https://doi.org/10.1111/j.1467-7687.2010.00987.x
Hyde, D. C., & Spelke, E. S. (2012). Spatiotemporal dynamics of processing nonsymbolic number: An event-related potential source localization study. Human Brain Mapping, 33(9), 2189–2203. https://doi.org/10.1002/hbm.21352
JACOB, S. N., & NIEDER, A. (2009). Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience, 30(7), 1432–1442. https://doi.org/10.1111/j.1460-9568.2009.06932.x
KARMILOFF-SMITH, A. (2010). Neuroimaging of the developing brain: Taking “developing” seriously. Human Brain Mapping, 31(6), 934–941. https://doi.org/10.1002/hbm.21074
KERSEY, A. J., & CANTLON, J. F. (2017). Neural tuning to numerosity relates to perceptual tuning in 3– 6-year-old children. Journal of Neuroscience, 37(3), 512–522. https://doi.org/10.1523/JNEUROSCI.0065-16.2016
LI, Y., CHEN, R., TUREL, O., FENG, T., ZHU, C. Z., & HE, Q. (2021). Dyad sex composition effect on inter-brain synchronization in face-to-face cooperation. Brain Imaging and Behavior, 15(3), 1667–1675. https://doi.org/10.1007/s11682-020-00361-z
NIEDER, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6(3), 177–190. https://doi.org/10.1038/nrn1626
NOTEBAERT, K., NELIS, S., & REYNVOET, B. (2011). The magnitude representation of small and large symbolic numbers in the left and right hemisphere: An event-related fMRI study. Journal of Cognitive Neuroscience, 23(3), 622–630. https://doi.org/10.1162/jocn.2010.21445
PIAZZA, M., IZARD, V., PINEL, P., LE BIHAN, D., & DEHAENe, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. https://doi.org/10.1016/j.neuron.2004.10.014
PIAZZA, M., PINEL, P., LE BIHAN, D., & DEHAENE, S. (2007). A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53(2), 293–305. https://doi.org/10.1016/j.neuron.2006.11.022
PINEL, P., DEHAENE, S., RIVIÈRE, D., & LEBIHAN, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026. https://doi.org/10.1006/nimg.2001.0913
REIGOSA-CRESPO, V., VALDÉS-SOSA, M., BUTTERWORTH, B., ESTÉVEZ, N., RODRÍGUEZ, M., SANTOS, E., TORRES, P., SUÁREZ, R., & LAGe, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123–135. https://doi.org/10.1037/a0025356
ROGGEMAN, C., SANTENS, S., FIAS, W., & VERGUTS, T. (2011). Stages of nonsymbolic number processing in occipitoparietal cortex disentangled by fMRI adaptation. Journal of Neuroscience, 31(19), 7168–7173. https://doi.org/10.1523/JNEUROSCI.4503-10.2011
SOLTÉZS, F., SZŰCS, D., & SZŰCS, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(13), 1–14.
TAK, S., & YE, J. C. (2011). NIRS-SPM: Statistical Parametric Mapping for Near-infrared Spectroscopy (pp. 1–54). Bio Imaging Signal Processing (BISP) Lab. Dept. of Bio and Brain Engineering, KAIST.
VENKATRAMAN, V., ANSARI, D., & CHEE, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753. https://doi.org/10.1016/j.neuropsychologia.2004.08.005
VOGEL, S. E., GOFFIN, C., & ANSARI, D. (2015). Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study. Developmental Cognitive Neuroscience, 12(1), 61–73. https://doi.org/10.1016/j.dcn.2014.12.001
VOGEL, S. E., GOFFIN, C., BOHNENBERGER, J., KOSCHUTNIG, K., REISHOFER, G., GRABNER, R. H., & ANSARI, D. (2017). The left intraparietal sulcus adapts to symbolic number in both the visual and auditory modalities: Evidence from fMRI. NeuroImage, 153, 16–27. https://doi.org/10.1016/j.neuroimage.2017.03.048
XU, F., & SPELKE, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1–11. https://doi.org/10.1016/S0010-0277(99)00066-9
YEE, E., DRUCKER, D. M., & THOMPSON-SCHILL, S. L. (2010). fMRI-adaptation evidence of overlapping neural representations for objects related in function or manipulation. NeuroImage, 50(2), 753–763. https://doi.org/10.1016/j.neuroimage.2009.12.036
YU, M., MO, C., LI, Y., & MO, L. (2015). Distinct representations of syllables and phonemes in Chinese production: Evidence from fMRI adaptation. Neuropsychologia, 77, 253–259. https://doi.org/10.1016/j.neuropsychologia.2015.08.027
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Cubana de Psicología

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente.
- Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución - Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No hay restricciones adicionales - No puede aplicar términos legales ni medidas tecnológicas a> que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Este resumen destaca sólo algunas de las características clave y los términos de la licencia real. Para ver texto completo consulte los Términos legales.