
 

29 

 

REVISTA INVESTIGACIÓN OPERACIONAL                                                                              VOL., 33 , NO. 29-37,  2012 

 

 

 

 

MODELING DECISION MAKING IN CLINICAL 

PRACTICE:A COST-EFFECTIVENESS 

APPROACH 
John E. Goulionis1 and A.Vozikis2 

Department of Statistics and Insurance science 

University of Piraeus, 80 Karaoli and Dimitriou Street,18534 Piraeus, Greece 

 
 ABSTRACT  
 Current medical research, focused on understanding the disease from a molecular level is exploring the correlation between 

 various inflammatory markers (cytokines) and patient survival. Partially observable Markov decision processes ( POMDPs ) 

 have recently been suggested as a suitable Model to formalizing the planning of Clinical Management over a prolonged period 

 of time. In this paper, we show how the POMDP framework can be used to model and solve the problem of the management 

 of patients, characterized by hidden disease states, investigative and treatment procedures. This model is significant because it 

 provides a way to make a tradeoff between choosing the investigative actions and the diagnosis actions. The results in this 

 paper demonstrate the potential value of inexpensive, accurate testing procedures as well as accurate interpretation of test 

 results. The reported experiments show that (POMDPs) provide Clinically Reasonable and justifiable solutions. 
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 RESUMEN 

 Las usuales investigaciones médicas, se enfocan en la comprensión de la enfermedad desde un nivel molecular al explorar la 

 correlación entre varios marcadores inflamatorios  (cytokines) y la sobrevivencia de los pacientes. Procesos de decisión de 

 Markov parcialmente observables ( POMDPs ) han sido sugeridos recientemente como un adecuado modelo para formalizar el 

 planeamiento del manejo clínico sobre un periodo prolongado. En este trabajo , demostramos como el marco de trabajo 

 brindado por  POMDP puede ser usado para modelar y resolver el problema del manejo de los pacientes, caracterizado por los 

 estados latentes de la enfermedad, procedimientos investigativos y de tratamientos. Este modelo es significante porque provee 

 una vía para establecer un compromiso entre seleccionar acciones investigativas y acciones diagnosticas. Los resultados de 

 este trabajo demuestran el valor potencial de baratos así como procedimientos de prueba de interpretación acurada. Los 

 reportes experimentales muestran que (POMDPs) provee soluciones Clínicamente Razonables y soluciones justificables. 
 

1. INTRODUCTION 

 

The diagnosis of a disease and its treatment are not separate processes. Although the correct diagnosis 

helps to narrow the appropriate treatment choices, it’s often the case that the treatment must be pursued 
without knowing the underlying patient state with certainty. The reason for this is that the diagnostic 

process is not a one shot activity and it is usually necessary to collect additional information about the 

underlying disease, which in turn may delay the treatment and make the patients’ outcome worse. This 

process may be even more complex when uncertainty associated with the reaction of a patient to 

different treatment choices and costs associated with various actions need to be considered. Thus, in a 

course of patient management one needs to carefully evaluate the benefit of possible diagnostic and 

treatment steps. Tο model accurately the complex sequential decision process that combines diagnostic 

and treatment steps, we need a framework that is expressive enough to capture all relevant features of 

the problem.  
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The tools typically used to model and analyze decision processes are stochastic decision trees, [14]. 

Unfortunately stochastic decision trees are not always the best choice, especially when a problem 

domain is complex and long decision sequences need to be considered. The key drawback of stochastic 

trees is that they require a large number of parameters to be defined, and thus, are hard to construct and 

modify. 

 
At the heart of decision theoretical planning is a Model called Markov decision process. A Markov 

decision process (MDP), see [2,3,8,9,10] extends the classic planning framework in several aspects. 

First, it allows effects of actions to be nondeterministic . Second the feedback from the world provides 

the exact information about the states of the world. A Markov decision process describes a stochastic 

control processes with the assumption of perfect Observability.  

 

Unfortunately, this assumption is too strong for many practical planning problems. Essentially, it 

corresponds to the situation in which we know with certainty what is the disease (or complication) the 

patient suffers from at any point in time. Also, if the disease is always known with certainty, there 

would be no need for investigative actions or procedures. This is in contrast to many medical problems 

in which investigative procedures are very common and play a major role. 

 
A  framework more suitable for modeling the outlined therapy problem is partially observable Markov 

decision process (POMDP), see [2,3,4,5,6,7]. A POMDP represents a controlled Markov process with 

two sources of uncertainty. Stochastic related to the dynamics of the control process, and uncertainty 

associated with the partial observability of the disease process by a decision maker.  The model of 

POMDPs is a generalization of MDPs. It assumes that the effects of the actions are nondeterministic as 

in MDP but does not assume that feedback provides perfect information about the state of the world. 

Instead, it assumes that feedback may provide incomplete or imperfect information about states of the 

environment, see c.f [11]. 

 

In this paper we apply POMDPs to medical therapy planning for patients. To reduce the computational 

complexity of problem–solving methods, we applied completely unobservable state. To build and solve 
the problem, we use a factored version of a POMDP with a hierarchical dynamic belief network model 

of the disease dynamics. Using structure–based techniques we were able to construct a model of 

moderate complexity and successfully solve a number of cases. To see why this paper is important, let 

us take a look at the interactions between an agent modeled by POMDP and its environments.  

 

On one hand, the patients’ state can be changed by executing actions. This procedure can be viewed as 

the control effects of actions. On the other hand, a feedback is provided to the agent when the patients’ 

states change. This procedure can be viewed as the information-gathering effects of actions since 

different actions can change patients to different states and in turn this allows the agent to receive 

different feedback. Therefore we provide a unified framework to handle these two sources of 

uncertainties: the control effects of actions and information gathering effects of actions. Hence, the 

model provides one way to make a tradeoff between choosing actions to change the patients’ states and 
actions to collect information for the agent. This tradeoff will be highlighted by one example in next 

section. 

 

The reminder of this paper is organized as follows. Section 2 formally describes the Markov Model and 

the first steps in building a general model. In section 3 we give the expressiveness of the POMDP 

framework and we give structural results describes model results with respect to changes in test cost 

and accuracy. Due to the finite observation and treatment horizons, the model is formulated as a finite 

horizon POMDP, where the patient’s true health state can only be observed through an inaccurate 

testing procedure that measures the value of a single cytokine level. In section 4 we present an 

algorithm for solution our problem and finally in section 5, for illustration a simple numerical example 

 

2. MEDICAL DECISION MAKING 

 

The first step in building a Markov Model of prognosis is the enumeration off all distinct states of 

health. For example  Well, Ill and Dead. Importantly, they should enable estimation or abstraction from 

the literature of specific transition probabilities per unit time among the various states. Some transitions 

in the Markov model may reflect two or more independent forces. We may suppose that the transition 

from Well to Dead reflects both the force of mortality in the general population and disease-specific 
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effects. Methods for assessing disease specific mortality rates have been reported elsewhere, see 

Anderson [1]. 

 

For Markov medical decision  making we have found it useful to consider two types of states: long 

term and temporary. Long term states, are states in which it is possible to remain from cycle to cycle. 

Temporary states reflect short-term events that force transition to another state in the model in the next 
cycle. For example, we could add a state to the model labeled HOSPITALIZED, to reflect one cycle 

spent in the hospital .If all transitions from HOSPITALIZED were to other states, then this new 

addition would be a temporary state.  

 

Note that in our temporary state the probability of remaining in that state is set to zero. For example, 

three such states might be HOSPITALIZATION, Period 1, HOSPITALIZATION, Period 2 and 

HOSPITALIZATION, Period 3.  

 

Life expectancy, a common employed outcome measure for clinical Decision making is defined as the 

average future lifetime of a cohort of patients with identical clinical features. A large number of 

patients are followed as a cohort. The cohort begins in an initial distribution of states, and at each cycle 

of the process the entire cohort is reallocated to states according to the transition probabilities. In the 
cohort analysis two values are kept for each state to each cycle: the number of patients currently in the 

state and the total number of patient-cycles in the state. For example, at cycle 2 the Well state includes 

9000 patients; the cumulative number of Well patients months is 100000+30000+9000, or 139000.  

 

After a sufficient number of cycles almost everyone will be dead. The few remaining patients can be 

treated in one of two ways: a small arbitrary amount of life expectancy can be added to each state that 

has remaining cohort members or the life expectancy can be truncated. The Markov cohort simulation 

is stopped when the remaining cohort has diminished to the point where any error introduced by 

summing up the experience of the remainder (dealing with the tail) is small compared to the total 

patient cycles accumulated during the analysis. 

 
When a Markov cohort analysis is terminated, the total number of patient-cycles for each state is 

divided by the size of the original cohort, yielding the expected time that each individual member will 

spend in each state. Life expectancy is the sum of these expected values. 

 

Table 1. Markov Cohort simulation 

 

Time 

       

WELL 

State 

ILL 

 

DEAD 

0 100000 0 0 

1 30000 50000 20000 

2 9000 40000 51000 

3 2700 24500 72800 

. . . . 

. . . . 

. . . . 

Sum 

Average Cycles 

(Sum/100000) 

Life expectancy 

142860 

1.43 

 

 

1.43+1.43=2.86     

cycles 

142860 

1.43 
. . . . 

 

2. MODEL DESCRIPTION AND ASSUMPTIONS 

 

A model that remedies the disadvantages of perfectly observable MDPs and still preserves some of 

their good features, like time-decomposability and reduced model complexity is POMDP see [2, 

3,11,12]. The POMDP generalizes the MDP framework by allowing the patient Health state to be 

partially observable through a testing process [13,15,19]. A Partially Observable Markov Decision 

Process, POMDP , is a collection (S, D, Ρ, Θ, R, C, β). The POMDP consists of a core process
tx , an 

observation process
tz , and a decision process

td . 
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The core process , 0,1,2,tx t is a discrete–time Markov process.  

    S={0, 1, 2, 3, …, N} is a finite state of process states (disease states); where 0, is the good 

state and N is the Worst state. At any given time period, the decision maker selects one of the 

actions of the set D. 

 D is the action space, (diagnostic and treatment procedures); and Θ is a finite set of 

observations (findings, results of diagnostic tests); All are finite and the stage invariant. D is 

taken to be composed of three disjoint sets Dtest, Dtreat, Dskip, where Dtest constitutes the set of 

available diagnostic procedures, Dtreat ={Surgery} and Dskip is a singleton set that consists of 

the special action skip (i.e. refrain from acting at the specified point in time) only. For 

example,Ischemic Heart Disease is caused by an imbalance between the supply and demand of 

oxygen to the heart. The condition is most often caused by the narrowing of coronary arteries 

(coronary artery disease) and an associated reduction in the oxygenated blood flow. The 
coronary artery disease tends to progress over time. The pace of the disease progress is 

stochastic and contingent on multiple factors. We consider at any point in time, the physician 

has different options to intervene:  

Dtreat={angioplasty–PTCA, coronary artery bypass surgery–CABG} 

Dtest={stress test, coronary angiogram}, that tends to reveal more about the underlying status of the 

coronary disease. Some of the interventions have a low cost, but some carry a significant cost 

associated with the invasiveness of the procedure. 

Dskip={medication treatment, do nothing}. 

The state of the patient undergoes deterioration according to a stationary discrete-time Markov chain 

having a known transition law. Let 
ijp denote the1-step transition probability from state i  to state j .  

 p
d

ij =pr[xt+1=j /xt= i, dt=d], Pd=(p
d

ij ) 

 At each time period, the state of the system is monitored incompletely by some monitoring 

mechanism. The outcome of the monitoring is classified into finite levels Θ={1,2,  …,M}. It’s 

assumed that the probabilistic relation between the state of the patient and the outcome of the 

monitoring is prescribed by the following known conditional probability: 

Pr the outcome of the monitoring is level the patient is in state iir , 

1,2i ,  …, N. 1,2 ,…,M . 

r
d

iq =Pr[zt=θ/ xt= i, dt-1=d ] i S ,d D. 

 

The basic POMDP model includes an observation process that relates observable information (i.e. 

results) to the patient’s true cytokine levels through the above known probability distribution. 

 Rd is the observation matrix. The observation is the outcome of test or response to therapy, 

where 
d

jθr =Pr[Yt=θ/Xt=j, dt-1 =d], j S, d D is the probability that observation θ Θ 

={1,2,3…,M} will be observed at the next stage, if the state at the next stage is j and d is the 

current action.  

 β is a discount–factor 0<β 1 for finite horizon c(i, d), 0 t<K  is the scalar –valued cost 

accrued, when the current state is. i S, and the action d D. The cost for a transition from 

state s to state s΄ under action d consists of three components: 

          C(s, d, s΄): =C (s΄)+C (d) ,                                                                                                             (1) 



 

33 

 

where C(s΄) is a cost associated with a patient state only, C(d) stands for a cost associated with an 

action (e.g. cost of a surgery), that includes the economic cost and patient’s discomfort. The cost, C(s΄), 

can be decomposed to costs associated with the amount of chest pain the patient suffers at a given time, 

and a loss lκ (s΄) to denote life expectancy (in years ) associated with final state s΄ at time t=K, where no 

action choice is made. 

C (s΄)=
i

[C(s i΄)+lκ(si΄)]                                                                                                                       (2) 

For initial information vector (belief–state) we note that the current prior can be found by a  more 

flexible model that targets different groups of patients and exploits other context information. For 

example  sex, age, smoking history, etc. There are logistic regression models developed for this 

purpose, see [12]. The cost structure considered here is as follows: ( )dC i , where ( , )c i d  is the scalar 

valued cost accrued, when the current state is i S  and action is d D . Because a test result may 

not received in every stage and the tests results that are received may either be inaccurate themselves or 

interpreted inaccurately, the model uses a belief vector to describe a probability distribution over the 

possible core states. 

 

An observer does not directly observe the core process. He sees instead one of the outputs which is 

probabilistically related to 
tz . Although the state of the core process is not known with certainty, it is 

possible to calculate the probability that the core process is in a given state. In particular we define: 

0 0 1Pr , , , , ,i t t tt x i z z d d  

 

The vector 1 2, , , Nt t t t  is called information vector, and the space of all 

such vectors, , is called the information space.  

We have:
1

1
N

i

i

t  and 0i
. It is well known that t is a sufficient Statistic [16,17]. 

More precisely, t summarizes all of the necessary information of the history of the process for 

choosing an action at time t . 

 

The values of the vector correspond to the clinician’s belief that the patient’s true health is in each of 

the possible states. The model utilizes an observation probability matrix to relate the observed values to 

the underlying health state. Then, using a prior estimate of the belief vector the current tests results, and 

knowledge of the last action taken, Bayesian updating is used to form a new estimate of the belief 

vector. The clinician’s decision is made based on the value of this belief vector at each decision point. 

If the information vector at time t  is and an alternative  is selected, and if an output  results, then 

the new information 1t  is given by ,T d .  

By Bayes’ rule. 

, 1
{ , }

d dP R
T t d t

d
.                                                                                        (3)  

, 1d dd P R  is the probability of receiving observation  at stage 1t , given that 

t  and d is the action selected at stage t . 

dR  be the diagonal matrix having 
d

ir  as its j -th diagonal term and zeros for all off– diagonal terms. 

Assuming 1 1, ,1col .  

 

The objective of a POMDP is to find an optimal policy among the admissible policies such that it 

minimizes a given performance index, typically the total expected discounted cost to be accrued over 

the infinite horizon, or the expected long-run average cost, conditioned on the a priori (0) . These 
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costs are defined in terms of the state 
tx  for each admissible strategy, δ, and information vector π (0) 

of the initial state by: 

 

The total expected discounted value for an initial information vector π Π can be stated as: 

V (π)=min(δ
0

,δ
1

,…)Ε [ t

δ (π(t))t
t=0

β .π(t).C /π(0)=π]
K

,                                                                              (4) 

where the sequence of control function {δ0, δ1, …} is termed a policy. 

 

The objective of the therapy planning (finite horizon) is to develop a strategy that would minimize the 

expected cumulative cost of the treatment, where the cost is defined in terms of the dead-alive trade-

off, quality of life, invasiveness of procedures and their economic cost. 

4. SOLUTION METHOD 

 

The standard approach to solving POMDP problems was initiated by Sondik [18]. He showed that the 

minimum expected of operating the POMDP for a finite time period is a piecewise-linear concave 

function over Π. Let 
*

0V  be any arbitrary bounded function, then for the finite horizon case 

*

t+1V  (π) = min{π.γ: γ  Γt} for some finite set Γt of vectors in Rn. 

Using this representation for 
tV  in the Dynamic programming (D.P) recursion 

*

t+1V (π)=min{π [cd+β Pd.

M
d l(π,d,θ)

θ

θ=1

R γ ]:d  D}                                                                           (5)  

where l(π,d,θ) is the index of the γ  Γt that minimizes π Pd d

θR γ, see [16],[15].  

Thus, given Γt and any π Π(s), one would find l(π,d,θ) for each d D and θ Θ, and  then find the 

optimal action and 
t+1V (π) from relation(5). 

The algorithm to discover all of the vectors in the set Γt+1 appropriate for defining 
*

t+1V  proceeds by 

choosing an arbitrary starting mass function π0 in the unit simplex, finding the indices l (π0, d, θ) for 

each d and θ, and then finding the optimal action d* in D from equation (13). Then the vector in the 

inner brackets in (5) evaluated at d* and π0, call it γ*, satisfies  

*

t+1V (π0) =γ*.π0.                                                                                              (6) 

This new vector γ
*
 is added to the Γt+1 set. The boundaries of the region in R

n
 over which γ

*
 is operative 

as the gradient of 
*

t+1V  are discerned by considering how the inner bracketed quantity in (5) might 

change as the mass vector π changes from the initial π 0 . Two ways are suggested: either the index 

l(π,d*,θ) changes from l(π 0 ,d*,θ), or the optimal  action changes. This first possibility will be realized 

if 

π
d d

θP R γl(π0,d*,θ) <  π
d d

θP R γ   for  γ Γt 

consequently the set of linear  inequalities: 

0l(π ,d ,θ)d d

θπ [P R γ - 
* *d d

θR γP ] 0        for   γ Γt , θ = 1, 2, … M                            (7) 

defines the region over which this possibility is excluded. The second possibility is investigated in the 

algorithm by setting up the inner bracketed expression in (5) for π=π0 and each action d, call it γ(d), 

and expressing the region over which d*   is operative by the set of linear inequalities: 

π[γ* - γ(d)]  0, with d D,                                                                                                                    (8) 
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where  γ(d) = 0

M
l(π ,d,θ)d d d

θ

θ=1

[C +β p R γ ] .                                                                     

 

Note that with this terminology γ*=γ(d*). The complete set of inequalities (7) and (8) are supposed to 

characterize the region over which γ* is optimal and γ* is the gradient of 
*

t+1V . This note now diverges 

from the Sondik paper, see [17]. The set of inequalities (7) and (8) does not necessarily capture the 

intended region, because in constructing γ(d), l(π0,d,θ) is used and it’s possible that for some π  
satisfying the inequalities (8) we might have l(π,d,θ)  l(π0,d,θ) and the inner bracketed term in (5) 

evaluated at action d and l(π,d,θ), call it γ''(d) ,can satisfy  

*π γ''(d) < π γ π γ(d)                                                                                                                   (9) 

for some d D. There will then exist a γ''(d)  vector that should be added to Γt as operative at π, but 

since the inequalities (8) will be satisfied the boundary will be missed. This possibility can be 
prevented by allowing for all possible combinations of action and l (π,d,θ) indices in the inner 

bracketed term in (8),i.e. all possible components  of Γt. Letting #D denote the cardinality of the set D, 

there will be (#D) (#
M

tΓ ) possibilities. Let G denote this set of all possible gradient vectors for period 

1t . Then starting with π0 and calculating γ* as above, we have that γ* is the operative slope if and 

only if 

 (γ*-γ) π 0 ,   γ G.                                                                                                                         (10) 

This extended set of inequalities will detect all possible changes, and hence subsumes   all of the 

inequalities (7), (8) and (10). 

 

5. NUMERICAL EXAMPLE 

 

In order to illustrate the solution procedure for the problem we present a numerical example. The 

parameters of problem are given as follows. 

S={1,2,3}, Θ={1,2,3}, D={0,1}, discount factor β= 0. 95 . 

Τhe transition matrices are the following for d=0 and d=1 respectively: 
0

0.6 0.3 0.1

0.05 0.75 0.2

0 0.15 0.85

P  

, 
1

0.8 0.1 0.1

0.7 0.2 0.1

0.4 0.6 0

P  

Τhe observation matrices are the following for α=0 and α=1 respectively: 

0

0.6 0.2 0.2

0.2 0.7 0.1

0.1 0.1. 0.8

R  ,
1

0.7 0.2 0.1

0.1 0.8 0.1

0.1 0.2 0.7

R  

Hence, 

0

1

0.6 0 0

0 0.2 0

0 .0 0.1

R ,
0

2

0.2 0 0

0 0.7 0

0 .0 0.1

R ,
0

3

0.2 0 0

0 0.1 0

0 .0 0.8

R  

1

1

0.7 0 0

0 0.2 0

0 .0 0.1

R ,
1

2

0.1 0 0

0 0.8 0

0 .0 0.2

R ,
1

3

0.1 0 0

0 0.1 0

0 .0 0.7

R  

The initial information vector is π (0)=(0.3,0.5,0.2). 
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0

1000

3000

7000

c , 
1

7000

8000

10000

c  

In this portrayal, the space of possible  vectors is represented by an equilateral triangles, with each 

point in the triangle corresponding to a possible state of the information vector . For each 

information vector 
1 2 3( , , ) , the perpendicular distance from the point to the side opposite 

the i-th vertex is just equal to 
i
( 1,2,3i ). Thus, points closer to the i-th vertex correspond to states 

of information in which the process is believed more likely to be in state i. 

 

Optimal control-limit policy: Α line segment connecting information vectors 

(0.50,0.50,0)  and (0.35,0,0.65)  

5. CONCLUSIONS 

 

In this paper we provide a method to compute the optimal cost and policy for clinical patient 

management, using the model of POMDPs. This model provides an elegant framework for medical 

therapy planning problems, to finite horizon and it may be able to inform clinical practice by providing 

policy results in addition to suggesting general strategies. Consequently, our models should only be 

used as an aid in the decision making process. Future research efforts could include the addition of 

multiple variables in the state description, including completely observable and partially observable 

elements. 
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