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ABSTRACT 

Acceptance sampling is a method for verifying quality or performance requirements using sample data.  Variables acceptance sampling 

is an alternative to attributes acceptance sampling, which in many instances requires significantly smaller samples. In this paper, we 
consolidate the literature on variables acceptance sampling by providing a unified exposition of the approach used to develop such plans.  

From within this framework, we review the derivation of plans for exponential, normal, gamma, Weibull, and Poisson random variables.  

We verified these derivations on a set of test problems. 
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RESUMEN 

El muestreo de aceptación es un método para  verificar la calidad o el requerimiento del  comportamiento usando datos muestrales.  El 

muestreo de aceptación por variables es una alternativa para el muestreo de aceptación por atributos, el cual en muchos casos requiere de 

muestras significativamente pequeñas. En este trabajo, consolidamos la literatura sobre el muestreo de aceptación por variables 
presentando una exposición unificada del enfoque usado para desarrollar tales planes. Desde el interior del marco de trabajo, revisamos 

la derivación de planes para variables aleatorias con distribución exponencial, normal, gamma, Weibull, y  Poisson.  Verificamos estas 

derivaciones sobre un conjunto de problemas de prueba. 

 

1. INTRODUCTION 

 

One of the oldest problems in quality engineering is to assess the acceptability of items that a customer receives 

from a producer.  Acceptance sampling is an alternative to 100% inspection applied when inspection is destructive, 

or when the time and/or cost of 100% inspection are unwarranted or prohibitive. The customer decides the 

disposition of an incoming lot based on a standard specifying the maximum proportion of nonconforming items in 

the sample. The decision can be to accept or reject the entire lot, or to continue sampling.   

Acceptance sampling also has been adapted to problems not identified with procurement.  Smith et al. [1] advocated 

the application of acceptance sampling in the context of water quality assessment.  Bayard et al. [2] applied the 

underlying binomial model to the assessment of future aircraft runway-incursion controls.  White, et al. [3] showed 

that attributes acceptance sampling can be applied to any sampling experiment, including those commonly employed 

to verify design requirements using simulation and Monte Carlo methods. 

Acceptance sampling by attributes (ASA) sentences a lot based a count of the number of nonconforming items 

relative to the sample size.  The inspection variable is binary (pass/fail) and therefore the count is necessarily 

binomial.  ASA can be used with categorical outputs, or with outputs measured on a continuous or discrete scale, by 

reference to a required limiting value.  Conceptually simple, easily applied, and universally applicable, ASA is the 

first choice for sampling inspection. 

Acceptance by variables (ASV) is an alternate approach, which in many instances prescribes significantly smaller 

samples than ASA.  ASV requires that inspection variable is measured on a continuous or discrete scale, that the 
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distribution of this variable is known a priori and stable, and that a plan exists for this particular distribution.  While 

far more restrictive in its assumptions, ASV should be considered when the larger samples required by ASA are 

unavailable.    

The objective of this paper is to consolidate the scholarly literature on ASV and provide a readable tutorial on the 

concept and general approach used to develop ASV plans for alternative parent distributions. While ASV in fact 

employs a consistent procedure for determining sampling plans, this commonality is obscured by different 

presentation styles and the sometimes vastly different notation adopted by researchers in the field.  Here we offer a 

unified presentation and a consistent notation.  In addition, each of the plans described here was implemented in a 

calculator and verified on a range of sample problems.  

 

2. PROBABILISTIC REQUIREMENTS AND LIMIT STANDARDS 

 

In uncertain environments, requirements verification seeks to determine whether a measureable quantity is 

conforming or nonconforming, i.e., to determine whether or not the parent population from which a sample is drawn 

achieves a specified level of quality or performance.  The requirement can stated probabilistically as an (I, , ) 

limit standard [3] where: 

 

(1)  I is the performance indicator. The measured quantity may be inherently categorical or qualitative in 

nature and performance indicated by occurrence or nonoccurrence of some event.  Alternately, the measured 

quantity may be inherently quantitative and performance indicated by success or failure in achieving a limit or 

tolerance.  

(2)  is the minimum reliability for the population.  This is the minimum, acceptable, long-run proportion of 

observations on which the population achieves the desired performance.  If p is the failure probability for the 

population, then requirement is p < 1-. 

(3)  is the maximum acceptable consumer’s risk.  This is the probability of incorrectly accepting a 

nonconforming population as the result of sampling error. 

Formally, we represent a measurable quantity as the random variable X with probability distribution F(x;) and 

density f(x;), where   is an unknown distribution parameter.  Let {Xi; i=1, …, n} be a random sample with 

observed values {xi; i=1, …, n}.  The verification problem is to determine whether or not the population as a whole 

conforms to a specified limit standard, based on the statistics of the sample observed.    

 

3. SAMPLING PLANS AND OPERATING CHARACTERISTICS 

 

A sampling plan is the pair (n,), where n is the minimum sample size, i.e., the minimum number of observations 

required to verify statistically the requirement imposed by standard.   is a constant factor which is used to assess 

whether or not the population is conforming. The interpretation of  depends on whether the characteristic is 

continuous or discrete, as discussed in Section 4.  

For a given distribution, every sampling plan has a unique operating characteristic (OC). The OC is a function 

which defines the probability of accepting a population Pa for every value of the failure probability p, i.e., the OC is 

the function Pa(p) where p[0,1].   A sampling plan is derived by first defining two operating points, (p0,1-) and 

(p1,), where p0< p1 and  and  are small probabilities.  We then require that the OC must (minimally) satisfy the 

following inequalities 

 

Pa(p0) > 1-              (1) 

 

Pa(p1) <            (2) 

Alternately, it is sometimes more convenient to express these in terms of the rejection probabilities as the power 

conditions Pr(p0)=1-Pa(p0) <  and Pr(p1)=1-Pa(p1) > 1- ).  Note that when p1 =1- and  is the consumers risk, 

inequality (2) enforces the limit standard.  Under this plan we will accept a population with failure probability p1 as 

conforming with small probability .  Inequality (1) captures the competing good—under this plan we will accept a 

population with probability p0 as conforming with high probability1-.    

The probability of incorrectly rejecting a conforming system, , is called the producer’s risk. When given as a 

percentage, 100%(1-po) is called the acceptable quality level (AQL) and 100%(1- p1) is called the lot tolerance 

percent defective (LTPD). Note that the limit standard does not specify the (po,1-) operating point.  It is common to 
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develop a range of plans with the required consumer’s risk  and differing Plans with larger sample sizes n then 

have smaller corresponding .   

 

4. HYPOTHESIS TESTING AND ACCEPTANCE LIMITS 

 

The underlying problem can be framed as an hypothesis test for which we intend to enforce both significance and 

power requirements.  The null and alternate hypotheses are 

H0: p = p0   and  H1: p = p1 > p0  

Under H0 fail to reject the population as nonconforming and under H1 we reject the population as nonconforming.  

Inequality (1) establishes the significance of test as  and inequality (2) establishes the power of the test as 1-, 

where  and  are the producer’s and consumer’s risk, respectively. 

We use the sample data to choose between the null and alternate hypotheses.  To accomplish this, we need to 

determine the critical value of an appropriate test statistic.  Denote the test statistic as the acceptance limit A(n,), 

where the arguments are the parameters of the sampling plan.  For a continuous quantity, =k and the acceptance 

limit and typically has the form 

 

 

where the plus is used with an upper bound and the minus with a lower bound. It follows that 

                         (3)
 

where  and  are estimators for the unknown parameter and the standard deviation of the population.   

For I a lower specification limit with value xmin, the desired performance on the i
th

 observation is achieved if and 

only if xi > xmin.  For the sample as a whole, we reject the null hypothesis if . That is, the 

acceptance limit is smaller than the specified limit.  For I an upper specification limit with value xmax, the desired 

performance on the i
th

 observation is achieved if and only if xi < xmax.  For the sample as a whole, we reject the null 

hypothesis if .  That is, the acceptance limit is larger than specified limit. The effect in either case 

is to move the critical point of the acceptance limit away the estimate of the unknown quantity in the direction of the 

specified limit by k standard deviations.   Intuitively, this hedge is intended to compensate for error in the estimate 

for a sample of n observations in a statistically exact way. (Note that in this paper we will not address the third case, 

where two limits are specified.  In this case I is a tolerance interval, xmax > xi > xmin.  The derivation of sampling 

plans for tolerance is modestly more complicated than that described in Section 5.  The interested reader is referred 

to the considerable literature on tolerance intervals.) 

For a discrete population characteristic, the acceptance limit has the form 

 

where Y is some function of X with nonnegative integer values. It follows that 

                         
(4) 

For a lower specification limit on Y, the acceptance number, c, is the minimum acceptable value of Y(n) and the 

rejection criteria is A(n,c)<0.  For an upper specification limit on Y, c is the maximum acceptable value of Y(n) and 

the rejection criteria is A(n,c)>0. 

 

5.  GENERAL PROCEDURE FOR DEVELOPING VARIABLES ACCEPTANCE SAMPLING PLANS 

 

For a continuous distribution with lower specification limit, the procedure comprises four steps:  

(1) Determine the value of 0 (typically the mean) for the null probability distribution with failure probability 

p0 = Pr[X< xmin]=F(xmin;0); determine the value of 1  for the alternate distribution with failure probability p1=Pr[X< 

xmin.]=F(xmin;1).  This is accomplished using the inverse distribution.  As shown in Figure 1, the requirement that 

p0< p1 implies that 0 >1. 

(2) Determine the minimum value of n from the sampling distributions for 0  and 1 such that both inequalities 

(1) and (2) are satisfied. 
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(3) Determine the maximum acceptance limit, A0, from the null sampling distribution with

; determine the minimum acceptance limit, A1, from the alternate sampling 

distribution with
 

; as illustrated in Figure 2. 

(4) Determine the factors k0 and k1 corresponding to A0 and A1, respectively, from Equation (3). In general, 

these factors are not equal.  A conservative choice is to use the larger of the two values as the factor k for the 

sampling plan.  Alternately, the k is sometimes taken as the average of these two values.   

For I an upper specification limit, the failure probability of the population is p=Pr[X> xmax]=1-F(x;).  The 

procedure is identical with this single exception.  For a discrete distribution, instead of the factors k0 and k1, at Step 4 

the constant c is determined. 

 
Figure 1.  Distribution functions and critical values for X under the null and alternate hypotheses. 

 

 

Figure 2.  Sampling distributions for the estimator  under the null and alternate hypotheses. 
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If the random variable X and the unknown parameter  can be standardized, it is generally more convenient to use 

the standardized distribution and standardized sampling distribution to derive sampling plans.  This convenience is 

illustrated in Section 6 for exponential and normal random variables.  

 

6.  METHODS IMPLEMENTED 

 

A literature search found derivations of (n, k) sampling plans for exponential, normal, gamma, and Weibull 

distributions.  These derivations follow the general procedure given in Section 5.  A derivation also was found for 

the (n,c) sampling plan for the Poisson distribution.  In this section, we outline these derivations with reference to 

lower specification limits.  The corresponding derivations for upper specification limits are easily deduced and are 

not covered here. 

 

6.1  Exponential  
 

Guenther [4] considers the exponential random variable X with unknown mean , support x[0,), and distribution 

function 

 

Note that exponential and chi-squared distributions are both special cases of the gamma distribution, with 

exponential()=chi-square(2)=gamma(1,). 

Denote a random variable distributed chi-squared with  degrees of freedom as Y.   X can be standardized as 

 

so that and 

                          (5) 

where p is either p0 or p1. Similarly, the estimator for the mean  is sample mean , which can be standardized 

as 

                        (6) 

Substituting Equation (5) into Equation (6) yields  

 

where p is either p0 or p1. Inequalities (1) and (2) imply 

 

 

Together these in turn imply that  

 

or 

(7) 

The minimum required sample size is the smallest value of the integer n satisfying inequality (7), which can be 

determined by table lookup. 
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With n known, the k-factor can be computed.  The estimator for both the mean and standard deviation is the sample 

mean, , therefore the acceptance limit is  

 

It is customary to let k=1-k’ and use the k-factors and 

 

 

6.2  Normal (-known) 

 

The derivation of sampling plans for measureable quantities distributed N(,2
) is widely published ([4], [5], [6], [7] 

and [8] among others) and the basis for standards MIL-STD-414 and ANSI/ASQC Z1.9, and ISO 2859.  Consider 

the normal random variable X with unknown mean , known standard deviation , support x(-,), and density 

function 

 

Denote a random variable distributed a standard normal N(0,1) as Z.  X can be standardized as  

 

such that where  

                                                                                                                                                          (8) 

The central limit theorem tells us that the mean estimator is distributed N(,2
/n), which can be standardized 

as
 

                         (9) 

where also is a standard normal N(0,1) deviate.   

The acceptance criterion is , so that we will reject the population if 

 

Inequalities (1) and (2) imply 

 

The acceptance-limit criteria (expressed as power requirements) from inequalities (1) and (2) then imply 
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Together these imply that  

 

                       (10) 

and therefore 

                       (11) 

The required sample size is the smallest integer value of n satisfying inequality (11).  With n known, the k-factors 

can be computed as from equations (10).   

 

6.3  Normal (-unknown) 

 

The more usual case is where  unknown and must be estimated from the sample data.  While an exact approach is 

available using a non-central t-distribution (see [4] among others), for modest sample sizes excellent approximations 

for n and k are achieved applying a result by Cramér [9] .  Let and S(n) be sample mean and standard 

deviation, respectively. For n sufficiently large, the distribution of the acceptance limit  

is asymptotically normally distributed N(A,2
A), with mean 

 

and variance 

 
The limiting variance 

2
/n is weighted by the expansion factor e(k,3,4)  [10].  For a non-Normal random variable X 

with mean  , standard deviation , skew 3, and kurtosis 4, 

                       (12) 

where the plus is used with an upper bound and the minus with a lower bound. For a  Normal random variable X, the 

skew is 3=0 and the kurtosis is 4=3. The expansion factor therefore reduces to [11] 

 
The derivation of n and k then proceeds as in the –known case, resulting in 
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Takagi [11] considers the gamma random variable X with unknown location  <x<  and estimated shape>0 and 

scale >0 (scale) parameters, support x[,), and density function  

 

The moments for this distribution are 

                                                                                                                                                          (13)
 

With the same normal approximation N(A,2
A) for A(k,n), the expansion factor given in Equation (12) is computed 

using the gamma moments in Equation (13). The derivation is essentially the same as that for the normal 

distribution, resulting in 

                       (14) 

and 

                       (15) 

Here 

 

is a standard gamma deviate with density  

 

for which T=0 and T=1.  The expansion factor in equation (12) is computed using the Weibull moments in 

Equations (10).  The expressions for n and k are again given by Equations (14) and (15), where it is understood that t 

is the Weibull deviate.   

 

6.5  Weibull  

 

Takagi [11] also considers the Weibull random variable X with unknown location  <x<  and estimated shape>0 

and scale >0 (scale) parameters, support x[,), and density function  

 

The moments for this distribution are  

                                                    (16) 

Here 

 

is a standard Weibull random variable with density 

  






 /)(

1

)(

/)(
),,;( 






 xe

x
xf









/63

2

 

4

3

22









2

43

01

),,(

















pp tt

zz
ken




2

01






















zz

tztz
k

pp






X
t

te
x

tf 





)(
);(

1






  










 










 
 xe

x
xf

1

),,;(

 
  42

4

33

3

222

)1()12(6)19)13(4)14(

)1(2)12(3)13(

T

T

T

T

bbbbb

bbb



















 )( 


x
T



 

 228 

 

and mean and variance 

 

where b=1/.  The expansion factor in Equation (12) is computed using the Weibull moments in equations (16).  The 

expressions for n and k are again given by Equations (14) and (15), where it is understood that t is the Weibull 

deviate.   

 

6.6  Poisson  

 

Guenther [4], [12] considers the Poison random variable X with unknown mean , support  x[0,1,2,…), and 

distribution function 

 

The means 0 and 1 can be determined form the inverse distribution.  Alternately, Guenther exploits the 

relationship between Poisson and chi-squared distributions and calculates the means using the expression 

 

We can think of X as a discrete random variable representing the number of usable items in a lot and specification 

limit xmin as the specified minimum number of usable items in each lot.   If we obtain a sample of n lots, the total 

number of usable items obtained is the sum 

 

which is distributed Poisson with a mean of n, i.e., F(y; n).  Because we are working with discrete random 

variables (as is the case in attributes acceptance sampling), the rejection criterion is based on the minimum total 

number of usable items in all of the lots, y> c+1=d, instead of the distance k.  Inequalities (1) and (2) are  

Pa(p> p0)=1- F(yd; n0) > 1- 

Pa(p> p1)=1- F(d; n1)<  

or more simply the power requirements F(d; n1)>1-  and F(d; n0) < . 

Again exploiting relationship between Poisson and chi-squared distributions, the power requirements imply 

 

This expression can be solved for a (d, n) sampling plan by enumeration.  The value of integer values of d is 

increased until an integer value of n is found which satisfies inequalities1 and 2. 

 

7. CONCLUSIONS 

 

The work reported in this paper is the first phase of a project intended to make ASV a practical alternative to ASA 

when appropriate variables plans are available. We initially reviewed the literature, discovering published plans for 

exponential, normal, gamma, and Weibull random variables.  With the exception of normal plans, our search for off-

the-shelf ASV plan calculators was fruitless. 

To perfect our own understanding and to facilitate the future development of variable plans for a wider selection of 

distributions, we introduced a consistent notation and interpreted the procedure for developing plans within the 

common framework of hypothesis testing ([4], [12]).  The result presented here is a consolidation of the existing 

literature.  In reviewing the methods presented, we also verified the mathematical derivations.  

The completion of this foundational research allowed us to implement plan calculators and test the accuracy these 

plans empirically.  Testing is necessary since, as we have shown here, the majority of variables plans are based on 

approximating the standard deviation by the employing an expansion factor to the sample standard deviation.  In the 

 tettf  1);(

)1()12(

)1(

22 



bb

b

T

T









x

i

i

i
exF

0

,
!

);(


 

2

2

1;2 min px 









n

j

jXY
0

1

2

1;2

0

2

;2

22 





  


dd
n



 

 229 

final phase of this project, we will address the practical application of ASV when distributional forms are 

themselves uncertain.   
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