
232

REVISTA INVESTIGACION OPERACIONAL VOL. 36, NO. 3, 232-239, 2015

VMODE: A HYBRID METAHEURISTIC FOR THE

SOLUTION OF LARGE SCALE OPTIMIZATION

PROBLEMS
Ernesto Díaz López1, Amilkar Puris 2, Rafael Rafael Bello 3
Universidad Central de Las Villas

ABSTRACT

Large scale continuous optimization problems have become increasingly common in real-world problems. The resolutions of these

are computationally expensive, so the use of scalable and efficient algorithms is of particular interest. In this paper is proposed a

hybrid algorithm, VMODE, which results from the combination of DE algorithm, known for its simplicity and efficiency and

VMO, a population-based algorithm with encouraging results in continuous optimization. A comparison among the three

algorithms is done using the 15 proposed functions for CEC-2013 (Special Session and Competition on Large-Scale Global

Optimization) demonstrating the superiority of the algorithm VMODE.

KEYWORDS: Differential Evolution, Variable Mesh Optimization, Continuous Optimization, Large Scale Global Optimization.

RESUMEN

Los problemas de optimización continua de gran escala se han vuelto cada vez más común en los problemas del mundo real. La

resolución de estos son computacionalmente costosos, por lo que el uso de algoritmos escalables y eficientes es de particular

interés. En este trabajo se propone un algoritmo híbrido, VMODE, que resulta de la combinación del algoritmo Differential

Evolution(DE), conocido por su sencillez y eficiencia y VMO, un algoritmo poblacional con resultados alentadores en la

optimización continua. Se realiza una comparación entre los tres algoritmos utilizando las 15 funciones propuestas para CEC-2013

(Sesión Especial y Competición en la Optimización Global a Gran Escala) que demuestra la superioridad del algoritmo VMODE.

1. INTRODUCTION

Optimizing large scale continuous problems is a research area that has gained great importance recently. Many

real problems in areas such as Engineering, Bioinformatics, Data mining, etc. can be solved as optimization

problems. The resolution of these problems, due to its complexity and difficult to solve by traditional

optimization methods, has been treated with the use of Evolutionary Algorithms (EA)[9],[3].

One representative evolutionary algorithm is the Differential Evolution (DE)[14].This algorithm is simple but

highly efficient in solving global optimization problems. Its efficiency has been demonstrated in applications of
neural networks [7], signal processing[13], electromagnetism[12], design of water distribution networks [18] and

many others. It has also proven its efficiency in solving optimization problems with and without constraints

[2],[16].
Variable Mesh Optimization (VMO)[11] is a recently proposed population-based metaheuristic for global

optimization. It yielded competitive results when compared with outstanding state of-the-art schemes in

continuous optimization. VMO features three search operators, one aimed at global exploration and two

for local optima exploitation. Thus, VMO seems to be a promising multimodal problem solver.

The complexity and high dimensionality of the real problems to be addressed by the EA has led to its limits.

This is the reason why many authors combine different algorithms looking to enhance the best of each method

in order to complement each other, knowing this strategy as hybrid metaheuristic. A comprehensive description

of these can be seen in [1],[17]. Following this methodology, in this work is decided to combine the VMO and DE

algorithms so that the resulting mesh, at each iteration of VMO, serves as the initial population of DE and

obtains a population of more quality. With this population VMO begins a new cycle.
The paper is organized as follows: In section II is provided a brief description of the VMO and DE algorithms.

In section III is explained the proposed hybrid algorithm VMODE. Section IV contains the experimental results

and performance analysis. Finally, conclusions are drawn in section IV.

1 e-mail: ediaz@uclv.edu.cu
2 e-mail: apuris@uteq.edu.ec
3 e-mail: rbellop@uclv.edu.cu

233

2. BRIEF REVIEW OF VMO AND DE

VMO and DE algorithms that result in the hybrid metaheuristic VMODE are briefly described in this section

2.1. Variable Mesh Optimization (VMO)

VMO is a metaheuristic in which the population is distributed as a mesh. This mesh is composed of P nodes

(𝑛1, 𝑛2,⋯, 𝑛𝑃) that represent solutions in the search space. Each node is coded as a vector of M floating point

numbers, 𝑛𝑖 = (𝑣1
𝑖 , 𝑣2

𝑖 ,⋯ , 𝑣𝑗
𝑖 , ⋯ , 𝑣𝑀

𝑖) that represent the solution to the optimization problem. In the search

process developed by VMO, two operations are executed: the expansion and contraction processes. During the

expansion, new nodes are generated in the direction of local extreme (mesh nodes with better quality in the

neighborhoods), the global end (node with better quality obtained in the process) and to the border nodes (nodes

nearest and furthest from the center of the search space base on the Euclidean distance). Based on an elitist

strategy, nodes are ordered according to their quality (by their fitness value) in ascending order. Cleaning

adaptive operator is then applied; each node is compared to its successors eliminating those that do not exceed a
threshold. The value of this threshold is calculated as:

𝜀𝑗 =

{

𝑟𝑎𝑛𝑔𝑒(𝑎𝑗 , 𝑏𝑗)

4
 𝑖𝑓 𝑐 < 0.15%𝐶

𝑟𝑎𝑛𝑔𝑒(𝑎𝑗 , 𝑏𝑗)

8
 𝑖𝑓 0.15%𝐶 ≤ 𝑐 < 0.3%𝐶

𝑟𝑎𝑛𝑔𝑒(𝑎𝑗 , 𝑏𝑗)

16
 𝑖𝑓 0.3%𝐶 ≤ 𝑐 < 0.6%𝐶

𝑟𝑎𝑛𝑔𝑒(𝑎𝑗 , 𝑏𝑗)

50
 𝑖𝑓 0.6%𝐶 ≤ 𝑐 < 0.8%𝐶

𝑟𝑎𝑛𝑔𝑒(𝑎𝑗 , 𝑏𝑗)

100
 𝑖𝑓 𝑐 ≥ 0.8%𝐶

where C and c denote a maximum number of fitness evaluations allowed and the current number of fitness

evaluations. In addition, the range (𝑎𝑗 , 𝑏𝑗) denotes the domain boundaries of each component.

The node generation process at each cycle comprises the following steps:

1. Randomly generate P nodes for the initial mesh.

2. Generate nodes toward the local best.

3. Generate nodes toward the global best.

4. Generate nodes from nodes in the mesh frontier.

The method includes the following parameters:

• Number of nodes in the initial mesh (P).

• Maximum number of mesh nodes in each cycle (T), where 3 • P = T.

• Size of neighborhood (k).

• Stop condition (S).

Algorithm 1 shows the pseudocode of the VMO model presented in 10.

Algorithm 1 VMO’s Pseudocode

1. begin

2. Randomly generate P nodes for the initial mesh

3. Select the global best in the initial mesh

4. repeat

5. for each node in initial mesh do

6. Find its closest k nodes by their spatial locations

7. Select the best neighbor as per the fitness values
8. if current node is not the local best then

9. Generate a new node toward the local best

10. end if
11. end for

234

12. for each node in initial mesh but the global best do

13. Generate a new node toward the global best

14. end for

15. Generate nodes from nodes in the mesh frontier

 (up to T nodes in the total mesh)

16. Sort nodes according to their fitness values
17. Apply the adaptive clearing operator

18. Select P best nodes to build the initial mesh for the

 next iteration

19. If needed, randomly generate new nodes so as to

 complete the initial mesh for the next iteration

20. until stop criterion (S) is met

21. end

2.2 Differential Evolution (DE)

DE is a simple yet powerful evolutionary algorithm for solving continuous optimization problems. This
follows the procedure of any evolutionary algorithm. The initial population contains NP individuals who are

represented by D-dimensional vectors 𝑥𝑖 , ∀𝑖 ∈ {1,… , 𝑁𝑃}, where D is the number of decision variables. The

initial population is generated randomly according to a uniform distribution.

Mutation: For each target vector xi,G at generation G an associated mutant vector 𝑣𝑖,𝐺 =

{𝑣𝑖1,𝐺 , 𝑣𝑖2,𝐺 ,⋯ , 𝑣𝑖𝐷,𝐺}, 𝑖 = 1,2,⋯ , 𝑁𝑃 is generated by using one of the following strategies [4],[10]:

 DE/rand/1: 𝑣𝑖,𝐺 = 𝑥𝑖1,𝐺 + 𝐹 ∙ (𝑥𝑖2,𝐺 − 𝑥𝑖3,𝐺)
DE/best/1: 𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 ∙ (𝑥𝑖1,𝐺 − 𝑥𝑖2,𝐺)

DE/current to best/1: 𝑣𝑖,𝐺 = 𝑥𝑖,𝐺 + 𝐹 ∙ (𝑥𝑏𝑒𝑠𝑡,𝐺 − 𝑥𝑖,𝐺) + 𝐹 ∙ (𝑥𝑖1,𝐺 − 𝑥𝑖2,𝐺)

DE/best/2: 𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 ∙ (𝑥𝑖1,𝐺 − 𝑥𝑖2,𝐺) + 𝐹 ∙ (𝑥𝑖3,𝐺 − 𝑥𝑖4,𝐺)

DE/rand/2: 𝑣𝑖,𝐺 = 𝑥𝑖1.𝐺 + 𝐹 ∙ (𝑥𝑖2,𝐺 − 𝑥𝑖3,𝐺) + 𝐹 ∙ (𝑥𝑖4,𝐺 − 𝑥𝑖5,𝐺)

where 𝑖 = 1, 2,… , 𝑁𝑃 y 𝑖1, 𝑖2, . . 𝑖5 are random and mutually different indices in the range [1,𝑁𝑃]. 𝐹 ∈ [0, 2] is

a mutation scale factor. Vector 𝑥𝑏𝑒𝑠𝑡,𝐺 is the best in the generation G.

Crossover: After the mutation phase, the "binominal" crossover operation is applied to each pair of the

generated mutant vector 𝑣𝑖,𝐺 = (𝑣𝑖1,𝐺 , … , 𝑣𝑖𝐷,𝐺) and its corresponding target vector 𝑥𝑖,𝐺 = (𝑥𝑖1,𝐺 , … , 𝑥𝑖𝐷,𝐺). The

binomial operation is defined as follows [15]:

𝑢𝑖𝑗,𝐺 = {
𝑣𝑖𝑗,𝐺 , 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗(0,1) ≤ 𝐶𝑅 𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑),

𝑥𝑖𝑗,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑗 = 1,… ,𝐷

CR is a crossover control parameter or factor within the range [0, 1] and 𝑗𝑟𝑎𝑛𝑑 is a randomly chosen integer

in the range [1,𝑁𝑃] to ensure that the trial vector contains at least one parameter of the mutant vector.

Selection: The fitness value of each trial vector 𝑓(𝑢𝑖,𝐺) is compared to that of its corresponding target vector

𝑓(𝑥𝑖,𝐺) in the current population. If the trial vector has smaller or equal fitness value (for minimization problem)

than the corresponding target vector, the trial vector will replace the target vector and enter the population of the

next generation. The operation is expressed as follows:

𝑥𝑖,𝐺+1 = {
𝑢𝑖,𝐺 , 𝑖𝑓 𝑓(𝑢𝑖,𝐺) ≤ 𝑓(𝑥𝑖,𝐺),

𝑥𝑖,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 = 1,… ,𝑁𝑃

The DE algorithm is outlined below:

Algorithm 2 Differential Evolution

1. begin

2. Initialize population

3. Evaluate initial population(fitness function)

235

4. for i=0 to max-iteration do

5. Select random trial vectors

6. Create offspring population(mutation, crossover)

7. Evaluate offspring population

8. Merge parent and offspring population

9. if an offspring is better than its parent then
10. Replace the parent by offspring in the next generation(selection)

11. end if

12. end for

13. end

3. THE PROPOSED ALGORITHM: VMODE

The VMODE metaheuristic employs VMO as the main core and inserts the DE algorithm in order to enhance
the initial mesh of the next iteration. The use of DE was decided to improve the quality of the population at the

end of the cleaning process done by VMO. The DE algorithm does not generate a random initial population but

takes as its initial population the matrix resulting from the cleaning operation performed by VMO, giving out a

population with higher quality individuals whose VMO starts a new iteration. Algorithm 3 shows a schematic of

the algorithm.

Algorithm 3 VMODE’s pseudocode

1. begin

2. Randomly generate P nodes for the initial mesh

3. Select the global best in the initial mesh
4. repeat

5. for each node in initial mesh do

6. Find its closest k nodes by their spatial locations

7. Select the best neighbor as per the fitness values

8. if current node is not the local best then

9. Generate a new node toward the local best

10. end if

11. end for

12. for each node in initial mesh but the global best do

13. Generate a new node toward the global best

14. end for

15. Generate nodes from nodes in the mesh frontier
 (up to T nodes in the total mesh)

16. Sort nodes according to their fitness values

17. Apply the adaptive clearing operator

18. Select P best nodes to build the initial mesh for the

 next iteration

19. DE call using VMO population

20. until stop criterion (S) is met

21. end

4. EXPERIMENTAL STUDIES

4.1. Experimental Setup

For the comparison of VMODE with VMO and DE, a recently proposed benchmark test suite for the CEC-2013

Special Session and Competition on Large Scale Global Optimization [8] has been utilized. This benchmark has

been designed with the aim of providing a suitable evaluation platform for testing and comparing large-scale

global optimization algorithms.

These are divided into 4 categories:

1. Fully-separable functions (f1, f2, f3)

2. Two types of partially separable functions:

236

a. Partially separable functions with a set of non-separable subcomponents and one fully-

separable subcomponents;. (f4, f5, f6, f7)

b. Partially separable functions with only a set of non-separable subcomponents and no fully-

separable subcomponent. (f8, f9, f10, f11)

3. Functions with overlapping subcomponents: the subcomponents of these functions have some

degree of overlap with its neighboring subcomponents. There are two types of overlapping
functions:

a. Overlapping functions with conforming subcomponents. (f12, f13)

b. Overlapping functions with conflicting subcomponents.(f14)

4. Fully-non-separable functions. (f15)

To perform the experiments it followed the same methodology used in CEC-2013 Special Session and

Competition on Large Scale Global Optimization[8]; each algorithm performs 25 runs for each of the functions

with the problem dimension D = 1000 and a maximum of evaluations of the objective function, Max_FE =

3x106.

4.2. VMO parameters

o Initial population size(P), P =100

o Maximum number of individuals (T) after the mesh expansion. T = 3 * P = 300

o The number of mesh nodes in the neighborhood(k), k=3

4.3. DE parameters

o F = 0.85
o CR = 0.5

o Mutation strategy DE/best/1

To achieve a balance between both algorithms, the number of iterations of DE has been limited to 20, taking

into account the number of evaluations of the objective function to be performed therein.

4.4. Results Analysis

The values obtained by the algorithms for each of the 15 functions after running the 25 runs with dimension

1000 is shown in Table 1. For each one, the average (AVG) and Standard Deviation (Dev_Std) are shown.
There are noted in bold the best results for each function.

The values show that the VMODE algorithm outperforms the others in all functions except f6 and f10, which is

only beaten by the DE algorithm. Both functions are derived from the Ackley function.

TABLE 1. Experimental results for dimension D = 1000

and 25 runs. Best results in bold.

 DE

AVG

Dev Std

VMO

AVG

Dev Std

VMODE

AVG

Dev Std

f1 3.51E+06 5.98E+01 1.29E-03

3.07E+06 6.53E+01 1.27E-03

f2 8.70E+03 5.12E+01 5.53E+03

6.17E+02 7.13E+00 3.96E+02

f3 1.02E+01 6.18E+00 3.70E-04

1.11E+00 1.69E-01 1.37E-04

f4 7.76E+11 2.83E+11 9.13E+09

1.84E+11 3.62E+10 3.73E+09

f5 7.28E+14 8.27E+14 7.28E+14

0.00E+00 3.46E+13 0.00E+00

f6 3.96E+03 4.48E+05 2.15E+05

2.93E+03 4.34E+04 4.33E+04

f7 6.22E+09 5.27E+08 3.43E+06

1.56E+09 2.19E+08 2.71E+05

237

f8 8.78E+15 1.58E+15 6.94E+13

3.57E+15 4.58E+14 7.22E+13

f9 7.25E+08 1.22E+09 7.68E+08

2.67E+07 2.06E+08 1.03E+08

f10 2.78E+05 1.24E+07 9.10E+06

4.98E+05 7.35E+06 3.05E+06

f11 1.07E+11 6.01E+09 1.66E+08

6.32E+10 1.05E+09 3.80E+07

f12 4.74E+07 1.40E+05 4.45E+03

4.72E+07 7.20E+04 4.61E+03

f13 8.15E+10 1.24E+10 2.46E+07

1.74E+10 2.89E+09 3.28E+06

f14 6.81E+11 7.60E+10 9.54E+07

3.21E+11 3.77E+10 1.13E+07

f15 4.11E+08 2.36E+07 1.10E+07

1.48E+09 3.66E+06 1.65E+06

4.5. Statistical Analysis

To make a comparative analysis among the algorithms, they are initially sorted according to their average

ranking. The calculation was applied separately to each of the categories in which the functions are divided [8]

As shown in Table 2 the best ranking algorithm for all categories was the VMODE. It is further appreciated that

with the increasing complexity of the functions VMODE also increases quality.

TABLE 2. Average rankings of algorithms.

Functions DE VMO VMODE

f1-f3 3.00 1.66 1.33

f4-f7 2.13 2.50 1.38

f8-f14 2.42 2.28 1.28

f15 3.00 2.00 1.00

all 2.50 2.19 1.29

With the intention of determining if significant differences exist between the results of the proposed algorithm

VMODE for a dimension of 1000 and VMO and DE algorithms, a Holm’s test was applied. Table 3 shows the

results obtained by employing a Holm’s test with VMODE as a control algorithm. In both cases the p-value is

smaller than α / i so that the hypothesis of equality is rejected (R).

TABLE 3. Holm test results

I Algorithm p α/i Hypothesis

2 DE 0.001 0.025 R

1 VMO 0.013 0.05 R

To complement the above multiple comparisons of all pairs of algorithms there were performed the Holm’s test

and Shaffer‘s test. These values were obtained by following the procedure in [5],[6] .Table 4 shows the results.

Both tests agree on the differences between the VMO and DE algorithms with VMODE. The table also shows
that the VMO and DE algorithms have no significant difference and in the comparison among them the

hypothesis is accepted (A).

TABLE 4. Values of p for Holm y Shaffer tests

I Algorithm P Holm Shaffer Hypothesis

3 DE vs VMODE 0.001015 0.017 0.017 R
2 VMO vs. VMODE 0.013710 0.025 0.05 R

238

1 DE vs. VMO 0.411313 0.05 0.05 A

In general, it can be confirmed that the VMODE algorithm achieves better results and that behavior is most

noticeable in the more complex functions.

3 CONCLUSIONS

It was introduced the VMODE algorithm, a hybrid metaheuristic that combines the VMO and DE algorithms.
The benchmark functions of the CEC-2013 Special Session and Competition on Large Scale Global

Optimization 16 were used for statistical tests that permitted the comparison among the algorithms.

The statistical results exposed the highest performance of the VMODE in most functions, especially in the more

complex ones.

The study of new variants of this algorithm, as well as a parallel version, represents our directions for future

work.

RECEIVED SEPTEMBER, 2014

REVISED JUNE, 2015

REFERENCES

[1] BLUM, C., PUCHINGER, J., RAIDL, G. R. & ROLI, A. (2011):Hybrid Metaheuristics in Combinatorial

Optimization: A Survey. Appl. Soft Comput. 11, 4135–4151.

[2] BREST, J., GREINER, S., BOŠKOVIĆ, B., MERNIK, M. & ŽUMER, V. (2006):Self-adapting control

parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans

Evol Comput 10(6), 646–657.

[3] DUQUE, T. S. P., SASTRY, K., DELBEM, A. C. B. & GOLDBERG, D. E. (2007): Evolutionary Algorithm

for Large Scale Problems. in Intell. Syst. Des. Appl. 819–822. doi:10.1109/ISDA.2007.114

[4] FEOKTISTOV, V. (2006):Differential evolution. Springer US.

[5] GARCÍA, S., FERNÁNDEZ, A., LUENGO, J. & HERRERA, F. (2010):Advanced nonparametric tests for

multiple comparisons in the design of experiments in computational intelligence and data mining:

Experimental analysis of power. Inf. Sci. (Ny). 180, 2044–2064.

[6] GARCÍA, S., MOLINA, D., LOZANO, M. & HERRERA, F. (2007):Un estudio experimental sobre el uso
de test no paramétricos para analizar el comportamiento de los algoritmos evolutivos en problemas de

optimización. Proc. 2007 Congr. Español sobre Metaheurísticas, Algoritm. Evol. y Bioinspirados, MAEB

2007 275–285.

[7] ILONEN, J., KAMARAINEN, J.-K. & LAMPINEN, J. (2003):Differential Evolution Training Algorithm

for Feed-Forward Neural Networks. Neural Process. Lett. 17, 93–105.

[8] LI, X. et al. (2013):Benchmark Functions for the CEC’2013 Special Session and Competition on Large-

Scale Global Optimization. Gene 1–21. at <http://goanna.cs.rmit.edu.au/~xiaodong/cec13-

lsgo/competition/cec2013-lsgo-benchmark-tech-report.pdf>

[9] LI, X. and YAO, X. (2012):Cooperatively coevolving particle swarms for large scale optimization. Evol.

Comput. IEEE Trans. 16, 210–224.

[10] PRICE, K., STORN, R. M. & LAMPINEN, J. A. (2005):Diferential Evolution : A Practical Approach to

Global Optimization. Nat. Comput. Ser. 519–524.

[11] PURIS, A., BELLO, R., MOLINA, D. & HERRERA, F. (2011): Variable mesh optimization for

continuous optimization problems. Soft Comput. 16, 511–525.

239

[12] ROCCA, P., OLIVERI, G. & MASSA, A. (2011):Differential Evolution as Applied to Electromagnetics.

Antennas Propag. Mag. IEEE 53, 38–49.

[13] STORN, R. (1995):Differential Evolution Design of an IIR-Filter with Requirements for Magnitude and

Group Delay. in Proc. IEEE Int. Conf. Evol. Comput. 1–15.

[14] STORN, R. & PRICE, K. (1997):Differential evolution-A simple and efficient adaptive scheme for global

optimization over continuous spaces. J. Glob. Optim. 11, 341–359.

[15] STORN, R., PRICE, K., RAINER, S. & KENNETH, P. (1997):Differential Evolution – A Simple and

Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 11, 341–359.

[16] TAKAHAMA, T., & SAKAI, S. (2005): Constrained optimization by ε constrained particle swarm

optimizer with ε-level control. Soft Computing as Transdisciplinary Science and Technology 1019-1029.

Springer Berlin Heidelberg

[17] TALBI, E., PUBLISHERS, K. A. & TALBI, G. A (2002):Taxonomy of Hybrid Metaheuristics. J.

heuristics 8, 541–564.

[18] VASAN, A. & SIMONOVIC, S. (2010):Optimization of Water Distribution Network Design Using

Differential Evolution. J. Water Resour. Plan. Manag. 136, 279–287.

